Please wait a minute...
New Technology of Library and Information Service  2012, Vol. 28 Issue (2): 53-59    DOI: 10.11925/infotech.1003-3513.2012.02.09
Current Issue | Archive | Adv Search |
Research of Patent Technology-effect Matrix Construction Based on Feature Degree and Lexical Model
Chen Ying1, Zhang Xiaolin2
1. Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing 100020, China;
2. National Science Library, Chinese Academy of Sciences, Beijing 100190, China
Export: BibTeX | EndNote (RIS)      
Abstract  For most of the patent technology-effect matrixes are now manually constructed,thus, a method for matrix structure construction based on feature degree and lexical model is presented. The feature degree is used for improving the correlation degree of candidate technical and effect words, and the lexical model for optimizing clustering of technical and effect words, generating matrix structure. This method provides technical support and new idea for automatically generating patent technology-effect matrix.
Key wordsPatent      Technology-effect matrix      Clustering      Feature degree      Model     
Received: 20 December 2011      Published: 23 March 2012



Cite this article:

Chen Ying, Zhang Xiaolin. Research of Patent Technology-effect Matrix Construction Based on Feature Degree and Lexical Model. New Technology of Library and Information Service, 2012, 28(2): 53-59.

URL:     OR

[1] Shan Xiaohong,Wang Chunwen,Liu Xiaoyan,Han Shengxi,Yang Juan. Identifying Lead Users in Open Innovation Community from Knowledge-based Perspectives[J]. 数据分析与知识发现, 2021, 5(9): 85-96.
[2] Che Hongxin,Wang Tong,Wang Wei. Comparing Prediction Models for Prostate Cancer[J]. 数据分析与知识发现, 2021, 5(9): 107-114.
[3] Wang Ruolin, Niu Zhendong, Lin Qika, Zhu Yifan, Qiu Ping, Lu Hao, Liu Donglei. Disambiguating Author Names with Embedding Heterogeneous Information and Attentive RNN Clustering Parameters[J]. 数据分析与知识发现, 2021, 5(8): 13-24.
[4] Zhu Hou,Fang Qingyan. Quantifying and Examining Privacy Paradox of Social Media Users[J]. 数据分析与知识发现, 2021, 5(7): 111-125.
[5] Zhang Le, Leng Jidong, Lv Xueqiang, Cui Zhuo, Wang Lei, You Xindong. RLCPAR: A Rewriting Model for Chinese Patent Abstracts Based on Reinforcement Learning[J]. 数据分析与知识发现, 2021, 5(7): 59-69.
[6] Lu Quan, He Chao, Chen Jing, Tian Min, Liu Ting. A Multi-Label Classification Model with Two-Stage Transfer Learning[J]. 数据分析与知识发现, 2021, 5(7): 91-100.
[7] Chen Xingyue, Ni Liping, Ni Zhiwei. Extracting Financial Events with ELECTRA and Part-of-Speech[J]. 数据分析与知识发现, 2021, 5(7): 36-47.
[8] Wang Xiwei,Jia Ruonan,Wei Yanan,Zhang Liu. Clustering User Groups of Public Opinion Events from Multi-dimensional Social Network[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[9] Cao Rui,Liao Bin,Li Min,Sun Ruina. Predicting Prices and Analyzing Features of Online Short-Term Rentals Based on XGBoost[J]. 数据分析与知识发现, 2021, 5(6): 51-65.
[10] Gao Yilin,Min Chao. Comparing Technology Diffusion Structure of China and the U.S. to Countries Along the Belt and Road[J]. 数据分析与知识发现, 2021, 5(6): 80-92.
[11] Wang Yizhen,Ou Shiyan,Chen Jinju. Automatic Abstracting Civil Judgment Documents with Two-Stage Procedure[J]. 数据分析与知识发现, 2021, 5(5): 104-114.
[12] Lu Linong,Zhu Zhongming,Zhang Wangqiang,Wang Xiaochun. Cross-database Knowledge Integration and Fingerprint of Institutional Repositories with Lingo3G Clustering Algorithm[J]. 数据分析与知识发现, 2021, 5(5): 127-132.
[13] Yi Huifang,Liu Xiwen. Analyzing Patent Technology Topics with IPC Context-Enhanced Context-LDA Model[J]. 数据分析与知识发现, 2021, 5(4): 25-36.
[14] Shi Xiang,Liu Ping. Extraction and Representation of Domain Knowledge with Semantic Description Model and Knowledge Elements——Case Study of Information Retrieval[J]. 数据分析与知识发现, 2021, 5(4): 123-133.
[15] Lv Xueqiang,Luo Yixiong,Li Jiaquan,You Xindong. Review of Studies on Detecting Chinese Patent Infringements[J]. 数据分析与知识发现, 2021, 5(3): 60-68.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938