Please wait a minute...
New Technology of Library and Information Service  2012, Vol. 28 Issue (4): 35-40    DOI: 10.11925/infotech.1003-3513.2012.04.06
Current Issue | Archive | Adv Search |
Mapping the Themes of Information Retrieval Based on Prefuse and Hierarchical Clustering
Xiao Ming1, Li Wenchao1, Xia Qiuju2
1. School of Management, Beijing Normal University, Beijing 100875, China;
2. Shanghai University of Engineering Science Library, Shanghai 201620, China
Export: BibTeX | EndNote (RIS)      
Abstract  In this paper, a thematic knowledge map framework using Prefuse is designed. Through the co-word analysis, hierarchical clustering and TreeML file conversion, the themes of information retrieval based on the framework are mapped. Finally, information retrieval research is divided into five themes: intelligent information processing, search engines related, user behavior, information system research and content-based information retrieval.
Key wordsPrefuse      Hierarchical clustering      Information retrieval      Theme study     
Received: 18 February 2012      Published: 20 May 2012

G350 TP311


Cite this article:

Xiao Ming, Li Wenchao, Xia Qiuju. Mapping the Themes of Information Retrieval Based on Prefuse and Hierarchical Clustering. New Technology of Library and Information Service, 2012, 28(4): 35-40.

URL:     OR

[1] Ding Y, Chowdhury G G, Foo S. Journal as Markers of Intellectual Space: Journal Co-Citation Analsis of Information Retrieval Area, 1987-1997[J]. Scientometrics, 2000, 47(1):55-73.

[2] Rorissa A, Yuan X J. Visualizing and Mapping the Intellectual Structure of Information Retrieval[J]. Information Processing & Management, 2012, 48(1): 120-135.

[3] 张小娣,宋余庆. 基于科学知识图谱的搜索引擎前沿分析[J]. 科技管理研究 , 2011(18): 226-230.(Zhang Xiaodi,Song Yu-qing. The Front Analysis of Search Engine Based on the Scientific Knowledge Map[J]. Science and Technology Management Research,2011(18):226-230.)

[4] 赵蓉英,陈瑞. 跨语言信息检索的知识图谱研究[J]. 情报理论与实践 ,2011,34(10): 96-100. (Zhao Rongying,Chen Rui.The Knowledge Map Study of Cross-Language Information Retrieval[J]. Information Studies:Theory & Application,2011,34(10):96-100.)

[5] Heer J, Card S K, Landay J A. Prefuse: A Tookit for Interactive Information Visualization[C].In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI'2005), Portland.2005.

[6] Prefuse Introduction[EB/OL].[2012-02-25].

[7] Goldstein D R, Ghosh D, Conlon E M. Statistical Issues in the Clustering of Gene Expression Data[J]. Statistica Sinica, 2002, 12: 219-240.

[8] 王知津,蒋伟伟. 十五年来我国网络信息检索研究述评[J]. 情报科学 ,2004,22(4):385-389.(Wang Zhijin,Jiang Weiwei.The Review of Study on Network Information Retrieval in China[J].Information Science,2004,22(4):385-389.)

[9] 王智红,潘晓丽,吴晓鸥. 近十年来我国网络信息检索研究主题分析[J]. 情报杂志 , 2009,28(7):1-6.(Wang Zhihong,Pan Xiaoli,Wu Xiaou. The Thematic Study of China Network Information Retrieval in the Last Decade[J]. Journal of Intelligence,2009,28(7):1-6.)

[10] Card S K, Nation D. Degree-of-Interest Trees: A Component of an Attention-Reactive User Interface[C]. In:Proceedings of the Working Conference on Advanced Visual Interfaces.2002.

[11] Budiu R, Pirolli P,Fleetwood M. Navigation in Degree of Interest Trees[C].In: Proceedings of the Working Conference on Advanced Visual Interfaces(AVI '06).2006.

[12] Prefuse User's Manual[EB/OL].[2012-02-25].
[1] Huang Mingxuan,Jiang Caoqing,Lu Shoudong. Expanding Queries Based on Word Embedding and Expansion Terms[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[2] Meng Zhen,Wang Hao,Yu Wei,Deng Sanhong,Zhang Baolong. Vocal Music Classification Based on Multi-category Feature Fusion[J]. 数据分析与知识发现, 2021, 5(5): 59-70.
[3] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[4] Wei Jiaze,Dong Cheng,He Yanqing,Liu Zhihui,Peng Keyun. Detecting News Topics Based on Equalized Paragraph and Sub-topic Vector[J]. 数据分析与知识发现, 2020, 4(10): 70-79.
[5] Mingxuan Huang,Shoudong Lu,Hui Xu. Cross-Language Information Retrieval Based on Weighted Association Patterns and Rule Consequent Expansion[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[6] Junzhi Jia,Zhuangzhuang Ye. Clustering Wikidata’s Organizational Entities with Latent Semantic Index[J]. 数据分析与知识发现, 2019, 3(10): 56-65.
[7] Sun Haixia,Wang Lei,Wu Yingjie,Hua Weina,Li Junlian. Matching Strategies for Institution Names in Literature Database[J]. 数据分析与知识发现, 2018, 2(8): 88-97.
[8] Yang Chaofan,Deng Zhonghua,Peng Xin,Liu Bin. Review of Information Retrieval Research: Case Study of Conference Papers[J]. 数据分析与知识发现, 2017, 1(7): 35-43.
[9] Zhang Xiaojuan,Han Yi. Reviews on Temporal Information Retrieval[J]. 数据分析与知识发现, 2017, 1(1): 3-15.
[10] Huang Mingxuan. Cross Language Information Retrieval Model Based on Matrix-weighted Association Patterns Mining[J]. 数据分析与知识发现, 2017, 1(1): 26-36.
[11] Ding Shengchun,Gong Silan,Li Hongmei. A New Method to Detect Bursty Events from Micro-blog Posts Based on Bursty Topic Words and Agglomerative Hierarchical Clustering Algorithm[J]. 现代图书情报技术, 2016, 32(7-8): 12-20.
[12] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
[13] Heng Ding, Wei Lu. A Study on Correlation-based Cross-Modal Information Retrieval[J]. 现代图书情报技术, 2016, 32(1): 17-23.
[14] Xiao Tianjiu, Liu Ying. Words and N-gram Models Analysis for “A Dream of Red Mansions”[J]. 现代图书情报技术, 2015, 31(4): 50-57.
[15] Mao Jin, Li Gang, Cao Yujie. Re-rank Retrieval Results Through Subject Indexing[J]. 现代图书情报技术, 2014, 30(7): 48-55.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938