Please wait a minute...
New Technology of Library and Information Service  2012, Vol. 28 Issue (6): 60-64    DOI: 10.11925/infotech.1003-3513.2012.06.10
Current Issue | Archive | Adv Search |
Influence Index Model of Micro-blog User
Yuan Fuyong1, Feng Jing1, Fu Qianqian1,2
1. College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China;
2. Economics Department, Qinhuangdao Institute of Technology, Qinhuangdao 066100, China
Export: BibTeX | EndNote (RIS)      
Abstract  The paper proposes users influence index model based on Sina micro-blog platform. Firstly, new users’ attention is used to replace the current false fans value, then the model uses this reasonable value to calculate users’ active index and micro-blog influence, at last it obtains the user influence by combining users’ active index and micro-blog influence reasonably. The model studies many factors of two aspects of users and users’ micro-blogs. The experiment result shows that the model can reduce the false fans’ interference and reflect the users’ real influence ability.
Key wordsSina micro-blog      User influence      User attention      Active index      Micro-blog influence     
Received: 03 May 2012      Published: 30 August 2012



Cite this article:

Yuan Fuyong, Feng Jing, Fu Qianqian. Influence Index Model of Micro-blog User. New Technology of Library and Information Service, 2012, 28(6): 60-64.

URL:     OR

[1] 许晓东,肖银涛,朱士瑞.微博社区的谣言传播仿真研究[J]. 计算机工程 ,2011,37(10):272-274.(Xu Xiaodong, Xiao Yintao, Zhu Shirui. Simulation Investigation of Rumor Propagation in Microblogging Community [J].Computer Engineering,2011,37(10):272-274.).

[2] 杨亮,林原,林鸿飞.基于情感分布的微博热点事件发现[J]. 中文信息学报 ,2012,26(1):84-90.(Yang Liang, Lin Yuan, Lin Hongfei. Micro-blog Hot Events Detection Based on Emotion Distribution [J].Journal of Chinese Information Processing, 2012, 26(1):84-90.).

[3] 李军,陈震,黄霁崴. 微博影响力评价研究[J]. 信息网络安全 ,2012(3):10-13,27. (Li Jun, Chen Zhen, Huang Jiwei. Micro-blog Impact Evaluation Study[J]. Information Network Security, 2012(3):10-13,27.)

[4] 袁毅.微博客信息传播结构、路径及其影响因素分析[J]. 图书情报工作 ,2011, 55(12):26-30. (Yuan Yi. The Analysis of Structure,Path and Impact Factor of Microblog Information Communication[J]. Library and Information Service,2011, 55(12):26-30.).

[5] Weng J S, Lim E P, Jiang J, et al. TwitterRank: Finding Topic-sensitive Influential Twitterers[C].In: Proceedings of the 3rd ACM International Conference on Web Search and Data Mining(WSDM 2010).New York: ACM,2010: 261-270.

[6] Cha M Y, Haddadi H, Benevenuto F, et al. Measuring User Influence in Twitter: The Million Follower Fallacy[C]. In: Proceedings of International AAAI Conference on Weblogs and Social Media(ICWSM’10),Washington. Menlo Park: The AAAI Press,2010.

[7] 石磊,张聪,卫琳.引入活跃指数的微博用户排名机制[J]. 小型微型计算机系统 ,2012(1):110-114.(Shi Lei, Zhang Cong, Wei Lin. Introducing Active Index to the Microbloggers’Ranking[J]. Journal of Chinese Computer Systems, 2012(1):110-114.)

[8] Ye S Z, Wu S F. Measuring Message Propagation and Social Influence on[C]. In: Proceedings of the 2nd International Conference on Social Informatics(SocInfo’10). Heidelberg: Springer-Verlag, 2010:216-231.

[9] Yamaguchi Y, Takahashi T, Amagasa T, et al. TURank: Twitter User Ranking Based on User-Tweet Graph Analysis[C].In: Proceedings of the 11th International Conference on Web Information Systems Engineering(WISE’10).Heidelberg,Berlin: Springer-Verlag,2010:240-253.

[10] 王冬,雷景生.一种基于PageRank的页面排序改进算法[J]. 微电子学与计算机 ,2009,26(4): 210-213. (Wang Dong, Lei Jingsheng.An Improved Ranking Algorithms Based on PageRank [J].Microelectronics & Computer,2009, 26(4):210-213.)

[11] 王德广,周志刚,梁旭.PageRank算法的分析及其改进[J]. 计算机工程 ,2010,36(22):291-292, F0003. (Wang Deguang, Zhou Zhigang, Liang Xu. Analysis of PageRank Algorithm and Its Improvement[J].Computer Engineering, 2010,36(22):291-292, F0003.)

[12] 金迪,马衍民. PageRank算法的分析及实现[J]. 经济技术协作信息 ,2009(18):118. (Jin Di, Ma Yanmin. The Analysis and Realism of the PageRank Algorithms [J]. Economic and Technological Cooperation Information, 2009(18):118.)
[1] Mingqing Zhao,Shengqiang Wu. Research on Stock Market Weighted Prediction Method Based on Micro-blog Sentiment Analysis[J]. 数据分析与知识发现, 2019, 3(2): 43-51.
[2] He Yue,Yin Xiaojia,Zhu Chao. Analyzing Characteristics of Weibo Users Based on Their Sentiments and Influences —— Case Study of Cell Phone Brand[J]. 数据分析与知识发现, 2017, 1(10): 12-20.
[3] Yuan Fuyong, Feng Jing, Fu Qianqian, Cao Xufeng. A Method to Reduce the Impact of Zombie Fans in Micro-blog[J]. 现代图书情报技术, 2012, 28(5): 70-75.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938