Please wait a minute...
New Technology of Library and Information Service  2012, Vol. 28 Issue (7): 66-75    DOI: 10.11925/infotech.1003-3513.2012.07.11
Current Issue | Archive | Adv Search |
Using Formal Concept Analysis to Construct the Model of User Behavior Knowledge Discovery in Folksonomy
Zhang Yunzhong
School of Management, Jilin University, Changchun 130022, China
Export: BibTeX | EndNote (RIS)      
Abstract  In allusion to the limitations of current researches of international academic community for UBKD in Folksonomy, a FCA-based UBKD model in Folksonomy is proposed in this paper. The model consists of seven functional modules:problem definition, data acquisition, data preparation, data organization, data mining, knowledge generation and evaluation & feedback. The core idea of the model lists as follows:on the basis of data organization which using the “FU:= (U,T×R, YU)” context, a visual data mining of common knowledge and personalized knowledge for UBKD in Folksonomy based on concept lattice is respectively achieved by the method called “external mapping” and “backtrack”, and finally the user group hierarchy and the single user behavior chain are respectively constructed.
Key wordsFormal concept analysis      Folksonomy      User behavior      Knowledge discovery     
Received: 16 June 2012      Published: 11 October 2012



Cite this article:

Zhang Yunzhong. Using Formal Concept Analysis to Construct the Model of User Behavior Knowledge Discovery in Folksonomy. New Technology of Library and Information Service, 2012, 28(7): 66-75.

URL:     OR

[1] 王翠英. 基于Folksonomy的用户偏好研究进展[J]. 现代图书情报技术 ,2009 (6):37-43.(Wang Cuiying. Research Development of Folksonomy-based User Profile[J].New Technology of Library and Information Service,2009 (6):37-43.)

[2] Sen S, Lam S K, Rashid A M, et al. Tagging, Communities, Vocabulary, Evolution[C]. In:Proceedings of the 20th Anniversary Conference on Computer Supported Cooperative Work(CSCW’06). New York:ACM Press, 2006:181-190.

[3] Golder S A, Huberman B A. Usage Patterns of Collaborative Tagging Systems[J].Journal of Information Science, 2006, 32(2):198-208.

[4] Sinha R. A Cognitive Analysis of Tagging[EB/OL].[2011-09-03].

[5] Szekely B, Torres E. Ranking Bookmarks and Bistros:Intelligent Community and Folksonomy Development[EB/OL].[2011-09-03].

[6] Cattuto C, Loreto V, Pietronero L.Collaborative Tagging and Semiotic Dynamics[EB/OL].[2011-09-03].

[7] Yeung C A, Gibbins N, Shadbolt N. Collective User Behaviour and Tag Contextualisation in Folksonomies[EB/OL]. [2011-07-29].

[8] Binkowski P J.The Effect of Social Proof on Tag Selection in Social Bookmarking Applications[EB/OL].[2011-09-03].

[9] Gattis L. Planning and Information Foraging Theories and Their Value to the Novice Technical Communicator[J]. ACM Journal of Computer Documentation,2002,26(4):168-175.

[10] Cosley D, Lam S K, Albert I, et al. Is Seeing Believing? How Recommender System Interfaces Affect Users’Opinions[C].In:Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI’03). New York:ACM Press,2003:585-592.

[11] Mathes A. Folksonomies-Cooperative Classification and Communication Through Shared Metadata[EB/OL].[2011-10-14].

[12] Guy M, Tonkin E. Folksonomies:Tidying up Tags?[J/OL].D-Lib Magazine,2006,12(1). [2011-10-16].

[13] Marlow C, Naaman M, Boyd D, et al. Position Paper, Tagging, Taxonomy, Flickr, Article, ToRead[EB/OL].[2011-10-16].

[14] Millen D R, Feinberg J, Kerr B. Dogear:Social Bookmarking in the Enterprise[C]. In:Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’06).New York:ACM Press,2006:111-120.

[15] Lund B,Hammond T, Flack M, et al.Social Bookmarking Tools (II):A Case Study-Connotea [J/OL].D-Lib Magazine, 2005, 11(4). [2011-10-16].

[16] Wetzker R, Zimmermann C, Bauckhage C. Analyzing Social Bookmarking Systems:A Cookbook[EB/OL].[2011-10-29].

[17] Krause B, Schmitz C, Hotho A, et al. The Anti-Social Tagger-Detecting Spam in Social Bookmarking Systems [EB/OL].[2011-10-29].

[18] Koutrika G, Effendi A,Gyongyi Z, et al. Combating Spam in Tagging Systems: An Evaluation[EB/OL]. [2011-10-29].

[19] 石豪,李红娟,赖雯,等. 基于Folksonomy标签的用户分类研究[J]. 图书情报工作 ,2011,55(2):117-120.(Shi Hao, Li Hongjuan, Lai Wen, et al. Study of Users Classification Based on Folksonomy Tags[J]. Library and Information Service, 2011,55(2):117-120.)

[20] 苏杨,石豪,赖雯,等. 利用同义词环改进基于Folksonomy的用户分类[J]. 图书情报工作 ,2011,55(8):58-61.(Su Yang, Shi Hao, Lai Wen, et al. Using Synonym Rings to Improve the User Classification According to Folksonomy Tags[J]. Library and Information Service, 2011,55(8):58-61.)

[21] Hotho A, Jaschke R, Schmitz C, et al. Information Retrieval in Folksonomies:Search and Ranking[C].In:Proceedings of the 3rd European Conference on the Semantic Web:Research and Applications(ESWC’06). Heidelberg, Berlin:Springer-Verlag, 2006:411-426.

[22] Hotho A, Jaschke R, Schmitz C, et al. Trend Detection in Folksonomies[C]. In:Proceedings of the 1st International Conference on Semantic and Digital Media Technologies(SAMT’06). Heidelberg, Berlin:Springer-Verlag, 2006:56-70.

[23] Jaschke R, Hotho A, Schmitz C, et al. Discovering Shared Conceptualizations in Folksonomies[J].Journal of Web Semantics, 2008,6(1):38-53.

[24] 张云中,杨萌,徐宝祥. 基于FCA的Folksonomy用户偏好挖掘研究[J]. 现代图书情报技术 , 2011(6):72-78.(Zhang Yunzhong, Yang Meng, Xu Baoxiang. Research on FCA-based User Profile Mining for Folksonomy[J].New Technology of Library and Information Service,2011(6):72-78.)

[25] 毛国君,段立娟,王实,等. 数据挖掘原理与算法[M].北京:清华大学出版社, 2005:41-47.(Mao Guojun, Duan Lijuan, Wang Shi, et al. Principle and Algorithm of Data Mining[M].Beijing:Tsinghua University Press, 2005:41-47.)

[26] Galicia Lattice Builder[EB/OL].[2011-12-20].

[27] Delicious Data [EB/OL]. [2012-02-23].
[1] Dai Bing,Hu Zhengyin. Review of Studies on Literature-Based Discovery[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[2] Liu Ping,Peng Xiaofang. Calculating Word Similarities Based on Formal Concept Analysis[J]. 数据分析与知识发现, 2020, 4(5): 66-74.
[3] Hu Zhengyin,Liu Leilei,Dai Bing,Qin Xiaochu. Discovering Subject Knowledge in Life and Medical Sciences with Knowledge Graph[J]. 数据分析与知识发现, 2020, 4(11): 1-14.
[4] Jie Ma,Yan Ge,Hongyu Pu. Survey of Attribute Reduction Methods[J]. 数据分析与知识发现, 2020, 4(1): 40-50.
[5] Jiahui Hu,An Fang,Wanqing Zhao,Chenliu Yang,Huiling Ren. Annotating Chinese E-Medical Record for Knowledge Discovery[J]. 数据分析与知识发现, 2019, 3(7): 123-132.
[6] Lu An,Yanping Liang. Selection of Users’ Behaviors Towards Different Topics of Microblog on Public Health Emergencies[J]. 数据分析与知识发现, 2019, 3(4): 33-41.
[7] Juhua Wu,Yu Wang,Ming Li,Shaoyun Cai. Knowledge Discovery of Online Health Communities with Weighted Knowledge Network[J]. 数据分析与知识发现, 2019, 3(2): 108-117.
[8] Linna Xi,Yongxiang Dou. Examining Reposts of Micro-bloggers with Planned Behavior Theory[J]. 数据分析与知识发现, 2019, 3(2): 13-20.
[9] Lei Yang,Zirun Wang,Guisheng Hou. Discovering Topics of Online Health Community with Q-LDA Model[J]. 数据分析与知识发现, 2019, 3(11): 52-59.
[10] Jiying Hu,Jing Xie,Li Qian,Changlei Fu. Constructing Big Data Platform for Sci-Tech Knowledge Discovery with Knowledge Graph[J]. 数据分析与知识发现, 2019, 3(1): 55-62.
[11] Liu Ping,Li Yanan,Yu Cong. Building Interactive Knowledge Map for Academic Search[J]. 数据分析与知识发现, 2018, 2(12): 43-51.
[12] Wang Xin,Feng Wen’gang. Review of Techniques Detecting Online Extremism and Radicalization[J]. 数据分析与知识发现, 2018, 2(10): 2-8.
[13] Zhang Zhiqiang,Fan Shaoping,Chen Xiujuan. Biomedical Informatics Studies for Knowledge Discovery in Precision Medicine[J]. 数据分析与知识发现, 2018, 2(1): 1-8.
[14] Mu Dongmei,Wang Ping,Zhao Danning. Reducing Data Dimension of Electronic Medical Records: An Empirical Study[J]. 数据分析与知识发现, 2018, 2(1): 88-98.
[15] Chen Yuan,Liu Fuzhen,Wu Jiang. Studying Users’ Interaction Behaviors of Sharing Economic Platform with 2-Mode Complex Network Analysis[J]. 数据分析与知识发现, 2017, 1(6): 72-82.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938