Please wait a minute...
New Technology of Library and Information Service  2012, Vol. 28 Issue (7): 76-81    DOI: 10.11925/infotech.1003-3513.2012.07.12
Current Issue | Archive | Adv Search |
Dynamic Faceted Method Based on Keyword Chains
Wang Li
Institute of Scientific & Technical Information of China, Beijing 100038, China
Export: BibTeX | EndNote (RIS)      
Abstract  This paper proposes a dynamic faceted method based on formal concept analysis, which extracts author keywords of literature, then merges the semantic similar keywords based on similarity calculation, and generates different granularity formal contexts. Finally, a lattice-based semantic faceted navigation is given. The empirical analysis shows that the method is feasible and effective.
Key wordsKeyword chains      Dynamic faceted method      Formal concept analysis      Concept lattice      Semantic similarity     
Received: 16 July 2012      Published: 11 October 2012



Cite this article:

Wang Li. Dynamic Faceted Method Based on Keyword Chains. New Technology of Library and Information Service, 2012, 28(7): 76-81.

URL:     OR

[1] 李伯阳.文本聚类方法研究及其应用[D].厦门:厦门大学,2008.(Li Boyang. Research on Text Clustering Methods and Their Applications [D]. Xiamen:Xiamen University, 2008.)

[2] Priss U. Faceted Information Representation[C]. In:Proceedings of the 8th International Conference on Conceptual Structures. Germany:Shaker Verlag Aachen, 2000:84-94.

[3] Kashyap A, Hristidis V, Petropoulos M, et al. Effective Navigation of Query Results Based on Concept Hierarchies [J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(4):540-553.

[4] Ling X, Mei Q Z, Zhai C X, et al. Mining Multi-faceted Overviews of Arbitrary Topics in a Text Collection [C]. In:Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD’08). New York:ACM Press, 2008:497-505.

[5] Krohn U, Davies N J, Weeks R. Concept Lattices for Knowledge Management [J]. BT Technology Journal, 1999,17(4):108-116.

[6] Koren J, Zhang Y, Liu X. Personalized Interactive Faceted Search [C]. In:Proceedings of the 17th International Conference on World Wide Web(WWW’08). New York:ACM Press, 2008:477-486.

[7] Ben-Yitzhak O, Golbandi N, Har’EI N, et al. Beyond Basic Faceted Search [C]. In:Proceedings of the International Conference on Web Search and Web Data Mining(WSDM’ 08). New York:ACM Press, 2008:33-44.

[8] Dash D, Rao J, Meqiddo N, et al. Dynamic Faceted Search for Discovery-driven Analysis [C]. In:Proceedings of the 17th International Conference on Information and Knowledge Management(CIKM’08). New York:ACM Press, 2008:3-12.

[9] 何超,程学旗,郭嘉丰.面向分面导航的层次概念格模型及挖掘算法[J]. 计算机学报 , 2011,34(9):1590-1602. (He Chao, Cheng Xueqi, Guo Jiafeng. Mining Hierarchical Concept Lattice for Faceted Navigation [J]. Chinese Journal of Computers, 2011, 34(9):1590-1602.)

[10] 赵金海.基于分面主题图探索式搜索研究[J]. 情报杂志 ,2012,31(1):175-179. (Zhao Jinhai. Research on the Facet-based Exploratory Search in Topic Maps [J]. Journal of Intelligence, 2012, 31(1):175-179.)

[11] Kuo B Y-L, Hentrich T,Good B M, et al. Tag Clouds for Summarizing Web Search Results [C]. In:Proceedings of the 16th International Conference on World Wide Web(WWW’07).New York:ACM Press, 2007:1203-1204.

[12] Dachselt R, Frisch M, Weiland M. FacetZoom:A Continuous Multi-scale Widget for Navigating Hierarchical Metadata [C]. In:Proceedings of the 26th Annual SIGCHI Conference on Human Factors in Computing Systems(CHI’08). New York:ACM Press, 2008:1353-1356.

[13] Karlson A K, Robertson G G, Robbins D C, et al. FaThumb:A Facet-based Interface for Mobile Search [C]. In:Proceedings of the 24th Annual SIGCHI Conference on Human Factors in Computing Systems(CHI’06). New York:ACM Press, 2006:711-720.

[14] 罗式胜.篇名关键词链特征的统计分析及应用[J]. 中国图书馆学报 ,1995,21(1):27-29. (Luo Shisheng. The Statiscal Analysis of the Characteristics of Title Keywords [J]. Journal of Library Science in China, 1995,21(1):27-29.)

[15] 裴婧,包宏.汉语句子相似度计算在FAQ中的应用[J]. 计算机工程 ,2009,35(17):46-48. (Pei Jing, Bao Hong. Application of Chinese Sentence Similarity Computation in FAQ [J]. Computer Engineering, 2009,35(17):46-48.)

[16] 何娟,高志强,陆青健,等.基于词汇相似度的元素级本体匹配[J]. 计算机工程 ,2006,32(16):185-187. (He Juan, Gao Zhiqiang, Lu Qingjian, et al. Element Level Ontology Matching Based on Lexical Similarity [J]. Computer Engineering, 2006, 32(16):185-187.)

[17] Wu Z, Palmer M. Verb Semantics and Lexical Selection [C]. In:Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics(ACL’94). Stroudsburg:Association for Computational Linguistics,1994:133-138.

[18] 刘宇鹏,李生,赵铁军.基于WordNet词义消歧的系统融合[J]. 自动化学报 , 2010,36(11):1575-1580. (Liu Yupeng, Li Sheng, Zhao Tiejun. System Combination Based on WSD Using WordNet [J]. Acta Automatica Sinica, 2010, 36(11):1575-1580.)

[19] 谢彩霞,梁立明,王文辉.我国纳米科技论文关键词共现分析[J]. 情报杂志 ,2005,24(3):69-73. (Xie Caixia, Liang Liming, Wang Wenhui. Co-Keyword Analysis in the Filed of Nanotechnology in China [J]. Journal of Intelligence,2005,24(3):69-73.)

[20] Agirre E, Rigau G. A Proposal for Word Sense Disambiguation Using Conceptual Distance [C]. In:Proceedings of International Conference on Recent Advances in Natural Language Processing(RANLP’95),Tzigov Chark.1995.

[21] Priss U E. A Graphical Interface for Document Retrieval Based on Formal Concept Analysis[C]. In:Proceedings of the 8th Midwest Artificial Intelligence and Cognitive Science Conference. 1997:66-70.
[1] Liu Ping,Peng Xiaofang. Calculating Word Similarities Based on Formal Concept Analysis[J]. 数据分析与知识发现, 2020, 4(5): 66-74.
[2] Jie Ma,Yan Ge,Hongyu Pu. Survey of Attribute Reduction Methods[J]. 数据分析与知识发现, 2020, 4(1): 40-50.
[3] Jiao Yan,Jing Ma,Kang Fang. Computing Text Semantic Similarity with Syntactic Network of Co-occurrence Distance[J]. 数据分析与知识发现, 2019, 3(12): 93-100.
[4] Liu Ping,Li Yanan,Yu Cong. Building Interactive Knowledge Map for Academic Search[J]. 数据分析与知识发现, 2018, 2(12): 43-51.
[5] Chen Erjing,Jiang Enbo. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[6] Wang Zixuan,Le Xiaoqiu,He Yuanbiao. Recognizing Core Topic Sentences with Improved TextRank Algorithm Based on WMD Semantic Similarity[J]. 数据分析与知识发现, 2017, 1(4): 1-8.
[7] Zhai Dongsheng,Cai Wenhao,Zhang Jie,Li Zhenfei. An Improved Method of Semantic Similarity Calculation of Chinese Trademarks[J]. 数据分析与知识发现, 2017, 1(11): 19-28.
[8] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[9] Lu Jiaying,Yuan Qinjian,Huang Qi,Qian Yunjie. Building Product Domain Ontology with Concept Lattice Theory[J]. 现代图书情报技术, 2016, 32(5): 38-46.
[10] Ba Zhichao,Li Gang,Zhu Shiwei. Similarity Measurement of Research Interests in Semantic Network[J]. 现代图书情报技术, 2016, 32(4): 81-90.
[11] Qiang Bi, Jian Liu, Yulai Bao. A New Text Clustering Method Based on Semantic Similarity[J]. 数据分析与知识发现, 2016, 32(12): 9-16.
[12] Liu Huailiang, Du Kun, Qin Chunxiu. Research on Chinese Text Categorization Based on Semantic Similarity of HowNet[J]. 现代图书情报技术, 2015, 31(2): 39-45.
[13] Fan Xuexue, Wang Zhirong, Xu Wu, Liang Yin, Ma Xiaohu. Research on Semantic Similarity Estimation Algorithm of Medical Terminology Based on Medical Ontology[J]. 现代图书情报技术, 2015, 31(12): 57-64.
[14] Yan Shiyan, Wang Shengqing, Luo Yunchuan, Huang Haojun. An Ontology Collaborative Construction Model Based on FCA in Cloud Computing Environment[J]. 现代图书情报技术, 2014, 30(3): 49-56.
[15] Hu Jiming, Xiao Lu. Semantic Incremental Improvement on Vector Space Model for Text Modeling[J]. 现代图书情报技术, 2014, 30(10): 49-55.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938