Please wait a minute...
New Technology of Library and Information Service  2012, Vol. 28 Issue (7): 109-114    DOI: 10.11925/infotech.1003-3513.2012.07.17
Current Issue | Archive | Adv Search |
An Approach to Discovery of Reference Control Gene for qRT-PCR Experiment Based on Texting Mining
He Lin, He Juan, Shen Gengyu, Yang Bo, Huang Shuiqing
Department of Information Management, Nanjing Agricultural University, Nanjing 210095, China
Export: BibTeX | EndNote (RIS)      
Abstract  This paper presents a method for identifying candidate reference control gene based on text mining from PubMed database. It integrates several approaches such as pattern matching, subject recognition and information extraction to find candidate gene and its experiment environment for biology domain specialists. Experiment results show that the method not only has good performance on mining of candidate reference control gene and its environments, but also saves much time and reduces cost.
Key wordsqRT-PCR      Reference control gene      Experiment environment      Text mining      Information extraction     
Received: 28 May 2012      Published: 11 October 2012



Cite this article:

He Lin, He Juan, Shen Gengyu, Yang Bo, Huang Shuiqing. An Approach to Discovery of Reference Control Gene for qRT-PCR Experiment Based on Texting Mining. New Technology of Library and Information Service, 2012, 28(7): 109-114.

URL:     OR

[1] Czechowski T, Stitt M, Altmann T, et al. Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis[J]. Plant Physiology, 2005, 139(1):5-17.

[2] Libault M, Thibivilliers S, Bilgin D D, et al. Identification of Four Soybean Reference Genes for Gene Expression Normalization [J]. The Plant Genome, 2008, 1(1):44-54.

[3] 胡瑞波,范成明,傅永福. 植物实时荧光定量PCR内参的选择[J]. 中国农业科技导报 , 2009, 11(6):30-36. (Hu Ruibo, Fan Chengming, Fu Yongfu. Reference Gene Selection in Plant Real-time Quantitative Reverse Transcription PCR(qRT-PCR)[J]. Journal of Agricultural Science and Technology, 2009, 11(6):30-36.)

[4] Faccioli P, Ciceri G P, Provero P, et al. A Combined Strategy of “in Silico” Transcriptome Analysis and Web Search Engine Optimization Allows an Agile Identification of Reference Genes Suitable for Normalization in Gene Expression Studies[J]. Plant Molecular Biology, 2007, 63(5):679-688.

[5] Coker J S, Davis E. Selection of Candidate Housekeeping Controls in Tomato Plants Using EST Data[J]. BioTechniques, 2003, 35(4):740-748.

[6] 丁效,宋凡,秦兵,等. 音乐领域典型事件抽取方法研究[J]. 中文信息学报 , 2011, 25(2):15-20. (Ding Xiao, Song Fan, Qin Bing, et al. Research on Typical Event Extraction Method in the Field of Music[J]. Journal of Chinese Information Processing, 2011, 25(2):15-20.)

[7] 许旭阳,李弼程,张先飞,等. 基于事件实例驱动的新闻文本事件抽取[J]. 计算机科学 , 2011,38(8):232-235. (Xu Xuyang, Li Bicheng, Zhang Xianfei, et al. News Text Event Extraction Driven by Event Sample[J]. Computer Science, 2011, 38(8):232-235.)

[8] 郑家恒, 菅小艳. 农作物信息抽取系统的设计与实现[J]. 计算机工程 , 2006, 32(7):197-198. (Zheng Jiaheng, Jian Xiaoyan. Design and Realization of the System of Farm Crop Information Extraction[J]. Computer Engineering, 2006, 32(7):197-198.)

[9] 高文利. 基于本体的军备情报抽取系统的设计与实现[J]. 现代图书情报技术 , 2010(1):83-87. (Gao Wenli. The System of Arms Information Extraction Based on Ontology[J]. New Technology of Library and Information Service, 2010(1):83-87.)

[10] The Stanford Parser: A Statistical Parser[EB/OL].[2011-12-18].

[11] Ashburner M, Ball C A, Blake J A, et al. Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium [J]. Nature Genetics, 2000, 25(1):25-29.

[12] Morris J, Hirst G. Lexical Cohesion Computed by Thesaural Relations as an Indicator of the Structure of Text [J]. Computational Linguistics, 1991, 17 (1):21-48.

[13] Jain M, Nijhawan A, Tyagi A K, et al. Validation of Housekeeping Genes as Internal Control for Studying Gene Expression in Rice by Quantitative Real-time PCR[J]. Biochemical and Biophysical Research Communications, 2006,345(2):646-651.
[1] Tan Ying, Tang Yifei. Extracting Citation Contents with Coreference Resolution[J]. 数据分析与知识发现, 2021, 5(8): 25-33.
[2] Huang Mingxuan,Jiang Caoqing,Lu Shoudong. Expanding Queries Based on Word Embedding and Expansion Terms[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[3] Xu Guang,Ren Ming,Song Chengyu. Extracting China’s Economic Image from Western News[J]. 数据分析与知识发现, 2021, 5(5): 30-40.
[4] Dai Bing,Hu Zhengyin. Review of Studies on Literature-Based Discovery[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[5] Yu Chuanming, Wang Manyi, Lin Hongjun, Zhu Xingyu, Huang Tingting, An Lu. A Comparative Study of Word Representation Models Based on Deep Learning[J]. 数据分析与知识发现, 2020, 4(8): 28-40.
[6] Xia Tian. Extracting Key-phrases from Chinese Scholarly Papers[J]. 数据分析与知识发现, 2020, 4(7): 76-86.
[7] Wang Yi,Shen Zhe,Yao Yifan,Cheng Ying. Domain-Specific Event Graph Construction Methods:A Review[J]. 数据分析与知识发现, 2020, 4(10): 1-13.
[8] Du Jian. Measuring Uncertainty of Medical Knowledge: A Literature Review[J]. 数据分析与知识发现, 2020, 4(10): 14-27.
[9] Tao Yue,Yu Li,Zhang Runjie. Active Learning Strategies for Extracting Phrase-Level Topics from Scientific Literature[J]. 数据分析与知识发现, 2020, 4(10): 134-143.
[10] Peng Guan,Yuefen Wang. Advances in Patent Network[J]. 数据分析与知识发现, 2020, 4(1): 26-39.
[11] Mingxuan Huang,Shoudong Lu,Hui Xu. Cross-Language Information Retrieval Based on Weighted Association Patterns and Rule Consequent Expansion[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[12] Yanan Yang,Wenhui Zhao,Jian Zhang,Shen Tan,Beibei Zhang. Visualizing Policy Texts Based on Multi-View Collaboration[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[13] Mengji Zhang,Wanyu Du,Nan Zheng. Predicting Stock Trends Based on News Events[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
[14] Zhiqiang Liu,Yuncheng Du,Shuicai Shi. Extraction of Key Information in Web News Based on Improved Hidden Markov Model[J]. 数据分析与知识发现, 2019, 3(3): 120-128.
[15] Chengzhi Zhang,Zheng Li. Extracting Sentences of Research Originality from Full Text Academic Articles[J]. 数据分析与知识发现, 2019, 3(10): 12-18.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938