Please wait a minute...
New Technology of Library and Information Service  2012, Vol. Issue (11): 47-52    DOI: 10.11925/infotech.1003-3513.2012.11.08
Current Issue | Archive | Adv Search |
Study on Named Entity Recognition Based on Cascaded Model for Field of Defense
Gao Qiang, You Hongliang
China Defense Science & Technology Information Center, Beijing 100142, China
Export: BibTeX | EndNote (RIS)      
Abstract  This paper first studies rule-based method and the statistic-based method of named entity,analyzes the strengths and weaknesses of the two methods.Then it presents a cascaded model for named entity recognition, which combines of the rule-based method and the statistic-based method.In the named entity recoginzation experiment for field of defense,the F value is more than 89%.
Key wordsNamed entity      Named entity recognition      Information extraction      Cascaded model      Conditional random fields     
Received: 14 October 2012      Published: 06 February 2013
:  TP391  

Cite this article:

Gao Qiang, You Hongliang. Study on Named Entity Recognition Based on Cascaded Model for Field of Defense. New Technology of Library and Information Service, 2012, (11): 47-52.

URL:     OR

[1] Roman Y, Ralph G. NYU: Description of the Proteus/PET System as Used for MUC-7 ST[C]. In: Proceedings of the 7th Message Understanding Conference (MUC-7), Fairfax, Virginia.1998.
[2] Fukumoto J, Shimohata M, Masui F. OKI Electric Industry: Description of the OKI System as Used for MET-2[C]. In: Proceedings of the 7th Message Understanding Conference (MUC-7), Fairfax, Virginia.1998.
[3] General Architecture for Text Engineering[EB/OL].[2012-07-15].
[4] Adam B, Stephen A. A Maximum Entropy Approach to Natural Language Processing[J]. Computational Linguistics,1996,22(1):39-71.
[5] Rabiner L R, Juang B H. An Introduction to Hidden Markov Models[J]. IEEE ASSP Magazine, 1986, 3(1):4-16.
[6] 赵晓凡,赵丹,刘永革. 利用CRF实现中文人名性别的自动识别[J]. 微电子学与计算机, 2011,28(10):122-128. (Zhao Xiaofan,Zhao Dan,Liu Yongge. The Automatic Gender Recognition of Chinese Name Using Conditional Random Fields[J]. Microelectronics & Computer, 2011,28(10):122-128.)
[7] Chieu H L,Teow L N. Combining Local and Non-Local Information with Dual Decomposition for Named Entity Recognition from Text[C]. In: Proceedings of the 15th International Conference on Information Fusion (FUSION), Singapore. 2012:231-238.
[8] Lafferty J, McCallum A, Pereira F. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data[C]. In: Proceedings of the 18th International Conference on Machine Learning. 2001:282-289.
[9] Developing Language Processing Components with GATE Version 7 (a User Guide)[EB/OL].[2012-07-15].
[10] 王昊. 基于层次模式匹配的命名实体识别模型[J]. 现代图书情报技术,2007 (5):62-68. (Wang Hao. Named Entity Extraction Model Based on Hierarchical Pattern Matching[J]. New Technology of Library and Information Service, 2007 (5):62-68.)
[11] 万如.中文机构名的识别研究[D]. 大连:大连理工大学,2008.(Wan Ru.The Research of Chinese Organization Name Recogintion[D]. DaLian:Dalian University of Technology,2008.)
[1] Tan Ying, Tang Yifei. Extracting Citation Contents with Coreference Resolution[J]. 数据分析与知识发现, 2021, 5(8): 25-33.
[2] Wen Pingmei,Ye Zhiwei,Ding Wenjian,Liu Ying,Xu Jian. Developments of Named Entity Disambiguation[J]. 数据分析与知识发现, 2020, 4(9): 15-25.
[3] Xu Chenfei, Ye Haiying, Bao Ping. Automatic Recognition of Produce Entities from Local Chronicles with Deep Learning[J]. 数据分析与知识发现, 2020, 4(8): 86-97.
[4] Zhao Ping,Sun Lianying,Tu Shuai,Bian Jianling,Wan Ying. Identifying Scenic Spot Entities Based on Improved Knowledge Transfer[J]. 数据分析与知识发现, 2020, 4(5): 118-126.
[5] Gao Yuan,Shi Yuanlei,Zhang Lei,Cao Tianyi,Feng Jun. Reconstructing Tour Routes Based on Travel Notes[J]. 数据分析与知识发现, 2020, 4(2/3): 165-172.
[6] Ma Jianxia,Yuan Hui,Jiang Xiang. Extracting Name Entities from Ecological Restoration Literature with Bi-LSTM+CRF[J]. 数据分析与知识发现, 2020, 4(2/3): 78-88.
[7] Wang Yi,Shen Zhe,Yao Yifan,Cheng Ying. Domain-Specific Event Graph Construction Methods:A Review[J]. 数据分析与知识发现, 2020, 4(10): 1-13.
[8] Liu Jingru,Song Yang,Jia Rui,Zhang Yipeng,Luo Yong,Ma Jingdong. A BiLSTM-CRF Model for Protected Health Information in Chinese[J]. 数据分析与知识发现, 2020, 4(10): 124-133.
[9] Tao Yue,Yu Li,Zhang Runjie. Active Learning Strategies for Extracting Phrase-Level Topics from Scientific Literature[J]. 数据分析与知识发现, 2020, 4(10): 134-143.
[10] Han Huang,Hongyu Wang,Xiaoguang Wang. Automatic Recognizing Legal Terminologies with Active Learning and Conditional Random Field Model[J]. 数据分析与知识发现, 2019, 3(6): 66-74.
[11] Zhiqiang Liu,Yuncheng Du,Shuicai Shi. Extraction of Key Information in Web News Based on Improved Hidden Markov Model[J]. 数据分析与知识发现, 2019, 3(3): 120-128.
[12] Yue Yuan,Dongbo Wang,Shuiqing Huang,Bin Li. The Comparative Study of Different Tagging Sets on Entity Extraction of Classical Books[J]. 数据分析与知识发现, 2019, 3(3): 57-65.
[13] Meishan Chen,Chenxi Xia. Identifying Entities of Online Questions from Cancer Patients Based on Transfer Learning[J]. 数据分析与知识发现, 2019, 3(12): 61-69.
[14] Chengzhi Zhang,Zheng Li. Extracting Sentences of Research Originality from Full Text Academic Articles[J]. 数据分析与知识发现, 2019, 3(10): 12-18.
[15] Li Yu,Li Qian,Changlei Fu,Huaming Zhao. Extracting Fine-grained Knowledge Units from Texts with Deep Learning[J]. 数据分析与知识发现, 2019, 3(1): 38-45.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938