Please wait a minute...
New Technology of Library and Information Service  2013, Vol. 29 Issue (1): 8-14    DOI: 10.11925/infotech.1003-3513.2013.01.02
Current Issue | Archive | Adv Search |
Identifying Query Intent by Exploiting Query Refinement
Zhang Xiaojuan, Lu Wei
Center for Studies of Information Resources, Wuhan University, Wuhan 430072, China
Export: BibTeX | EndNote (RIS)      
Abstract  Based on the AOL log dataset, this paper tries to exploit query reformation to identify the concrete query intent of users without given query intent category system. This paper mainly discusses how to identify the query reformation which can express the user intent of original query and how to cluster the query intent. The final results evaluated manually show that this experiment achieves a good effect.
Key wordsQuery intent      Query refinement      Random walk      Query intent clustering     
Received: 25 December 2012      Published: 29 March 2013
:  G353.4  

Cite this article:

Zhang Xiaojuan, Lu Wei. Identifying Query Intent by Exploiting Query Refinement. New Technology of Library and Information Service, 2013, 29(1): 8-14.

URL:     OR

[1] Duan R, Wang X, Hu R, et al. Dependency Relation Based Detection of Lexicalized User Goals[C]. In:Proceedings of the 7th International Conference on Ubiquitous Intelligence and Computing(UIC'10).Berlin, Heidelberg:Springer-Verlag,2010:167-178.
[2] Strohmaier M, Lux M, Granitzer M. How do Users Express Goals on the Web?-An Exploration of Intentional Structures in Web Search[C].In: Proceedings of the 2007 International Conference on Web Information Systems Engineering(WISE'07).Berlin, Heidelberg:Springer-Verlag,2007:67-78.
[3] Gonzalez-Caro C, Calderon-Benavides L, Baeza-Yates R.Web Queries: The Tip of the Iceberg of the User's Intent [C]. In:Proceedings of the 2011 International Conference on Web Search and Web Data Mining.2011.
[4] 陆伟, 周红霞, 张晓娟. 查询意图研究综述[J]. 中国图书馆学报,2013,39(1):100-111.(Lu Wei, Zhou Hongxia, Zhang Xiaojuan. Review of Research on Query Intent[J].Journal of Library Science in China,2013,39(1): 100-111.)
[5] Strohmaier M, Prettenhofer P,Lux M. Different Degrees of Explicitness in Intentional Artifacts: Studying User Goals in a Large Search Query Log[C].In: Proceedings of International Workshop on Commonsense Knowledge and Goal Oriented Interfaces(CSKGOI'08).2008.
[6] Strohmaier M, Kröll M, Körner C.Intentional Query Suggestion: Making User Goals More Explicit During Search[C].In: Proceedings of the 2009 Workshop on Web Search Click Data(WSCD'09). New York, NY, USA:ACM,2009:68-74.
[7] He K Y, Chang Y S, Lu W H. Improving Identification of Latent User Goals Through Search-Result Snippet Classification[C]. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence. Washington, DC, USA:IEEE Computer Society,2007:683-686.
[8] Lee U, Liu Z, Cho J. Automatic Identification of User Goals in Web Search [C]. In: Proceedings of the 14th International Conference on World Wide Web.New York, NY, USA:ACM, 2005: 391-400.
[9] Liu Y Q,Zhang M,Ru L,et al. Automatic Query Type Identification Based on Click Through Information[C].In:Proceedings of Asia Information Retrieval Symposium-AIRS. Berlin,Heidelberg:Springer,2006: 593-600.
[10] Ashkan A, Clarke C L A, Agichtein E,et al. Classifying and Characterizing Query Intent[C]. In:Proceedings of the 31st Annual European Conference on Information Retrieval Research (ECIR'09), Berlin, Heidelberg:Springer-Verlag,2009: 578-586.
[11] Mendoza M, Zamora J. Identifying the Intent of a User Query Using Support Vector Machines[C].In:Proceedings of the 16th International Symposium on String Processing and Information Retrieval(SPIRE'09). Berlin,Heidelberg:Springer, 2009:131-142.
[12] Shi X, Yang C C.Mining Related Queries from Web Search Engine Query Logs Using an Improved Association Rule Mining Model[J]. Journal of the American Society for Information Science and Technology, 2007,58(12):1871-1883.
[13] Jones R, Rey B, Madani O,et al. Generating Query Substitutions[C]. In: Proceedings of the 15th International Conference on World Wide Web.New York, NY, USA:ACM,2006: 387-396.
[14] Wen J R, Nie J Y, Zhang H J. Query Clustering Using User Logs[J].ACM Transactions on Information Systems, 2002,20(1):59-81.
[15] Hosseini M, Abolhassani H. Hierarchical Co-clustering for Web Queries and Selected URLs[C]. In:Proceedings of the 8th International Conference on Web Information Systems Engineering(WISE'07 ).Berlin, Heidelberg:Springer-Verlag,2007:653-662.
[16] Yi J, Maghoul F. Query Clustering Using Click-Through Graph[C].In: Proceedings of the 18th International Conference on World Wide Web.New York, NY, USA:ACM,2009:1055-1056.
[17] Chan W S, Leung W T, Lee D L. Clustering Search Engine Query Log Containing Noisy Clickthroughs[C].In: Proceedings of the 2004 International Symposium on Applications and the Internet.2004:305-308
[18] Baeza-Yates R, Hurtado C, Mendoza M. Improving Search Engines by Query Clustering[J].Journal of the American Society for Information Science and Technology, 2007,58(12):1793-1804.
[19] Huang X, Du Y, Ren Y. Query Clustering Based on User Feed Back[J].Journal of Computational Information Systems, 2011,7(13):4871-4879.
[20] Jarvelin A, Jarvelin K. S-grams: Defining Generalized N-grams for Information Retrieval[J].Information Processing & Management,2007,43(4):1005-1019.
[21] Jones R, Klinkner K L. Beyond the Session Timeout: Automatic Hierarchical Segmentation of Search Topics in Query Logs[C].In: Proceedings of the 17th ACM Conference on Information and Knowledge Management.New York, NY, USA:ACM,2008:699-708.
[22] Sadikov E, Madhavan J, Wang L, et al. Clustering Query Refinements by User Intent[C].In:Proceedings of the 19th International Conference on World Wide Web(WWW'10).New York, NY, USA:ACM,2010:841-850.
[23] AOL[EB/OL].[2012-12-14].
[24] He D Q, Goker A. Detecting Session Boundaries from Web User Logs[C].In:Proceedings of the 22nd Annual Colloquium on Information.2000.
[25] Berry K J, Mielke P W. A Generalization of Cohen's Kappa Agreement Measure to Interval Measurement and Multiple Raters[J]. Educational and Psychological Measurement, 1998,48(4):921-933.
[1] Chen Wenjie,Wen Yi,Yang Ning. Fuzzy Overlapping Community Detection Algorithm Based on Node Vector Representation[J]. 数据分析与知识发现, 2021, 5(5): 41-50.
[2] He Wanying,Yang Jianlin. Ranking Learning Method Based on Random Walk Model[J]. 数据分析与知识发现, 2017, 1(12): 41-48.
[3] Ren Ke,Lu Wei,Ding Heng. The Impacts of Query Specificity on Information Retrieval[J]. 现代图书情报技术, 2016, 32(11): 34-43.
[4] Tang Jingxiao,Lv Xueqiang,Liu Chengyang,Li Han. A Hierarchical Framework for User Intention Recognition[J]. 现代图书情报技术, 2014, 30(1): 36-42.
[5] Yu Yan, Qiu Guanghua. Research on Collaborative Filtering Recommendation Algorithm by Fusing Social Network[J]. 现代图书情报技术, 2012, 28(6): 54-59.
[6] Yu Yan, Qiu Guanghua. Research on User Interest Shift Aware Random Walk with Restart Recommendation Algorithm[J]. 现代图书情报技术, 2012, 28(4): 48-53.
[7] Yu Yan, Qiu Guanghua. Research on Random Walk with Restart Recommendation Algorithm of Explicit Rating[J]. 现代图书情报技术, 2012, 28(3): 8-14.
[8] Zhou Zhicheng. Real-Time Search Suggestions Based on the Clustering of the User’ s Query Intent[J]. 现代图书情报技术, 2011, 27(2): 87-93.
[9] Yu Yan, Qiu Guanghua, Chen Aiping. Friend Recommendation Algorithm Based on Mixed Graph in Online Social Networks[J]. 现代图书情报技术, 2011, (11): 54-59.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938