Please wait a minute...
New Technology of Library and Information Service  2013, Vol. 29 Issue (1): 22-29    DOI: 10.11925/infotech.1003-3513.2013.01.04
Current Issue | Archive | Adv Search |
Combining Logical Inference with Content-based Computing for Intelligent Retrieval in Academical Networks
Nie Hui
School of Information Management, Sun Yat-Sen University, Guangzhou 510275, China
Export: BibTeX | EndNote (RIS)      
Abstract  The expression ability of Ontology description language OWL-DL is restricted in description logic. The actual utilization regarding Ontology is impacted due to the implicated relations among Ontology individuals not being able to be detected. With regard to the issue, the SWRL-based inference mechanism for knowledge base is introduced, by which semantic relations implied in the knowledge base can be identified. Consequently, implicit knowledge is embodied explicitly and more extensive inference results can be available. The mechanism is employed to tackle the problem of implicit knowledge discovery of academic resources on the Web. Furthermore, the topic-specific relations for the academic resources are built on the basis of the content-based similarity measure. All regarding approaches are tested in the prototype indicating reasonability, feasibility and effectiveness of the scheme.
Key wordsOntology inference      SWRL      Intelligent retrieval     
Received: 09 January 2013      Published: 29 March 2013
:  TH18  

Cite this article:

Nie Hui. Combining Logical Inference with Content-based Computing for Intelligent Retrieval in Academical Networks. New Technology of Library and Information Service, 2013, 29(1): 22-29.

URL:     OR

[1] 田竹. 基于本体和SWRL推理的知识检索方法研究[D]. 成都:电子科技大学, 2011.(Tian Zhu. Knowledge Retrieval Based on Ontology & SWRL Inference[D]. Chengdu: University of Electronic Science and Technology of China, 2011.)
[2] 陈布伟,李冠宇,张俊,等. 基于语义网规则语言的推理机制框架设计[J]. 计算机工程与设计, 2010,31(4):847-849.(Chen Buwei, Li Guanyu, Zhang Jun, et al. Framework Design of SWRL-based Reasoning Mechanism[J]. Computer Engineering and Design, 2010, 31(4):847-849.)
[3] Beimel D, Peleg M. Using OWL and SWRL to Represent and Reason with Situation-based Access Control Policies [J]. Data & Knowledge Engineering, 2011, 70(6):596-615.
[4] Ye Y, Jiang Z B, Diao X D, et al. An Ontology-based Hierarchical Semantic Modeling Approach to Clinical Pathway Workflows[J]. Computers in Biology and Medicine, 2009, 39(8): 722-732.
[5] Yang D, Miao R, Wu H W, et al. Product Configuration Knowledge Modeling Using Ontology Web Language[J]. Expert Systems with Applications, 2009,36(3):4399-4411.
[6] Besana P, Cuggia M, Zekri O, et al. Using Semantic Web Technologies for Clinical Trial Recruitment[C]. In: Proceedings of the 9th International Semantic Web Conference(ISWC'10). Berlin, Heidelberg : Springer-Verlag, 2010: 34-49.
[7] Tao C, Solbrig H R, Sharma D K, et al. Time-oriented Question Answering from Clinical Narratives Using Semantic-Web Techniques[C]. In: Proceedings of the 9th International Semantic Web Conference(ISWC'10). Berlin, Heidelberg : Springer-Verlag, 2010: 241-256.
[8] O'Connor M J, Das A. Semantic Reasoning with XML-based Biomedical Information Models[C]. In:Proceedings of the 13th World Congress on Medical Informatics. 2010: 986-990.
[9] Chi Y L. Rule-based Ontological Knowledge Base for Monitoring Partners Across Supply Networks[J]. Expert Systems with Applications, 2010, 37(2):1400-1407.
[10] Wang X Y, Lv T Y, Wang S S, et al. An Ontology and SWRL Based 3D Model Retrieval System[C]. In: Proceedings of the 4th Asia Information Retrieval Symposium on Information Retrieval Technology(AIRS'08). Berlin, Heidelberg : Springer-Verlag, 2008:335-344.
[11] Cheng G, Du Q Y, Ma H L, et al. The Design and Implementation of Ontology and Rules Based Knowledge Base for Transportation[C]. In: Proceedings of the 2008 International Conference on Computer Science and Software Engineering(CSSE'08). Washington, DC, USA: IEEE Computer Society, 2008:1035-1038.
[12] 张巍. 融合FAQ、本体和推理技术的问答系统研究[D]. 太原:太原理工大学,2011.(Zhang Wei. Research on Question-Answering System Mixed with FAQ, Ontology and Reasoning Technology[D]. Taiyuan: Taiyuan University of Technology, 2011. )
[13] Pérez-Agüera J R, Arroyo J, Greenberg J, et al. Using BM25F for Semantic Search[C]. In: Proceedings of the 3rd International Semantic Search Workshop(SEMSEARCH'10). New York, NY, USA: ACM, 2010.
[1] Bai Haiyan, Wang Li, Liang Bing. UMLS and Its Application in Field of Intelligent Retrieval[J]. 现代图书情报技术, 2012, 28(4): 1-9.
[2] Ni Ping, Lu Yuhong. Implementation of Ontology-based TMC Diagnosis Reasoning by C-F Theory[J]. 现代图书情报技术, 2012, 28(4): 22-28.
[3] Ding Shengchun, Jiang Chaonan. Excavating Implicit Relation Based on SWRL[J]. 现代图书情报技术, 2011, 27(3): 68-72.
[4] Xu Deshan,Qiao Xiaodong,Zhu Lijun,Jiang Caihong,Gong Lihuan. Application of Ontology-based Reasoning in Knowledge Retrieval[J]. 现代图书情报技术, 2009, 3(1): 58-63.
[5] Song Qi,Xue Jianwu . Study of the Ontology Mapping Method Based on the User Model in the Intelligent Retrieval System[J]. 现代图书情报技术, 2006, 1(9): 29-33.
[6] Zhao Wei,Sun Wandong . Multi-Agent Intelligent Retrieval System Model Research Based on Ontology[J]. 现代图书情报技术, 2006, 1(5): 27-30.
[7] Kong Jing. Study on Intelligent Retrieval System Model[J]. 现代图书情报技术, 2005, 21(3): 37-42.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938