Please wait a minute...
New Technology of Library and Information Service  2013, Vol. 29 Issue (1): 30-35    DOI: 10.11925/infotech.1003-3513.2013.01.05
Current Issue | Archive | Adv Search |
Research on Collaborative Filtering of Heuristic Transitive Similarity Between Items
Li Linna1, Li Jianchun2, Zhang Zhiping1
1. Institute of Scientific&Technical Information of China, Beijing 100038, China;
2. School of Computer & Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450052, China
Export: BibTeX | EndNote (RIS)      
Abstract  Aiming at the problem of only finding similar relationship between items rated by common users and enlightened by the transitivity between peoples among social network, this paper figures that the similarity between items also have transitivity. A collaborative filtering algorithm based on heuristic similarity propagation between items is proposed. The experiments indicate that the proposed method can provide better recommendation accuracy by comparing with classic collaborative filtering algorithms.
Key wordsCollaborative filtering      Similar network      Sparsity     
Received: 13 November 2012      Published: 29 March 2013
:  G250.7  

Cite this article:

Li Linna, Li Jianchun, Zhang Zhiping. Research on Collaborative Filtering of Heuristic Transitive Similarity Between Items. New Technology of Library and Information Service, 2013, 29(1): 30-35.

URL:     OR

[1] Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions[J]. IEEE Transactions on Knowledge and Data Engineering,2005, 17(6): 734-749.
[2] 项亮. 推荐系统实践[M]. 北京:人民邮电出版社,2012. (Xiang Liang. The Development of Recommendation Systems[M]. Beijing: Posts & Telecom Press,2012.)
[3] Deshpande M, Karypis G. Item-based Top-n Recommendation Algorithms[J]. ACM Transactions on Information Systems,2004, 22(1): 143-177.
[4] Linden G, Smith B, York J. Recommendations: Item-to-item Collaborative Filtering[J]. IEEE Internet Computing,2003, 7(1): 76-80.
[5] 刘建国, 周涛,汪秉宏. 个性化推荐系统的研究进展[J]. 自然科学进展,2009,19(1):1-15. (Liu Jianguo, Zhou Tao, Wang Binghong. Advances in Personalized Recommendation System [J]. Progress in Nature Science,2009, 19(1):1-15.)
[6] Breese J, Heckerman D, Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering[C]. In: Proceedings of Conference on Uncertainty in Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998:43-52.
[7] Herlocker J L, Konstan J A, Terveen L G, et al. Evaluating Collaborative Filtering Recommender Systems[J]. ACM Transactions on Information Systems,2004, 22(1): 5-53.
[8] Schein A I, Popescul A, Ungar L H, et al. Methods and Metrics for Cold-start Recommendations[C]. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press,2002:253-260.
[9] Lam X N, Vu T, Le T D, et al. Addressing Cold-start Problem in Recommendation Systems[C]. In: Proceedings of the 2nd International Conference on Ubiquitous Information Management and Communication. New York: ACM Press,2008:208-211.
[10] Zhang Z K, Zhou T, Zhang Y C. Tag-aware Recommender Systems: A Start-of-the-Art Survey[J]. Journal of Computer Science and Technology,2011, 26(5):767-777.
[11] Huang Z, Chen H, Zeng D. Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering[J]. ACM Transactions on Information Systems,2004, 22(1):116-142.
[12] Huang Z, Chung W, Ong T H, et al. A Graph-based Recommender System for Digital Library[C]. In: Proceedings of the 2nd ACM/IEEE-CS Joint Conference on Digital Libraries. New York: ACM Press,2002:65-73.
[13] Papagelis M, Plexousakis D, Kutsuras T. Alleviating the Sparsity Problem of Collaborative Filtering Using Trust Inferences[C]. In: Proceedings of the 3rd International Conference on Trust Management. Berlin,Heidelberg: Springer-Verlag,2005:224-239.
[14] Nanopoulos A. Collaborative Filtering Based on Transitive Correlations Between Items[J]. In:Proceedings of the 29th European Conference on IR Research(ECIR'07).Berlin, Heidelberg:Springer-Verlag,2007:368-380.
[15] Sarwar B, Karpis G, Konstan J, et al. Item-based Collaborative Filtering Recommendation Algorithms[C]. In: Proceedings of the 10th International World Wide Web Conference. New York: ACM Press,2001:285-295.
[16] Fabian P L, Eduardo S. A Taxonomy of Collaborative-based Recommender Systems[J]. Studies in Computational Intelligence,2009, 229: 81-117.
[17] Netflix[EB/OL]. [2010-04-22].
[18] Netflix.Netflix Prize[EB/OL]. [2010-04-22].
[19] Bennett J, Lanning S. The Netflix Prize[C]. In: Proceedings of KDD Cup and Workshop. New York: ACM Press,2007.
[20] Shani G, Gunawardana A. Evaluating Recommendation Systems[EB/OL]. [2011-08-19].
[1] Feng Yong,Liu Yang,Xu Hongyan,Wang Rongbing,Zhang Yonggang. Recommendation Model Incorporating Neighbor Reviews for GRU Products[J]. 数据分析与知识发现, 2021, 5(3): 78-87.
[2] Li Zhenyu, Li Shuqing. Deep Collaborative Filtering Algorithm with Embedding Implicit Similarity Groups[J]. 数据分析与知识发现, 2021, 5(11): 124-134.
[3] Yang Chen, Chen Xiaohong, Wang Chuhan, Liu Tingting. Recommendation Strategy Based on Users’ Preferences for Fine-Grained Attributes[J]. 数据分析与知识发现, 2021, 5(10): 94-102.
[4] Yang Heng,Wang Sili,Zhu Zhongming,Liu Wei,Wang Nan. Recommending Domain Knowledge Based on Parallel Collaborative Filtering Algorithm[J]. 数据分析与知识发现, 2020, 4(6): 15-21.
[5] Su Qing,Chen Sizhao,Wu Weimin,Li Xiaomei,Huang Tiankuan. Personalized Recommendation Model Based on Collaborative Filtering Algorithm of Learning Situation[J]. 数据分析与知识发现, 2020, 4(5): 105-117.
[6] Zheng Songyin,Tan Guoxin,Shi Zhongchao. Recommending Tourism Attractions Based on Segmented User Groups and Time Contexts[J]. 数据分析与知识发现, 2020, 4(5): 92-104.
[7] Ding Yong,Chen Xi,Jiang Cuiqing,Wang Zhao. Predicting Online Ratings with Network Representation Learning and XGBoost[J]. 数据分析与知识发现, 2020, 4(11): 52-62.
[8] Fusen Jiao,Shuqing Li. Collaborative Filtering Recommendation Based on Item Quality and User Ratings[J]. 数据分析与知识发现, 2019, 3(8): 62-67.
[9] Shan Li,Yehui Yao,Hao Li,Jie Liu,Karmapemo. ISA Biclustering Algorithm for Group Recommendation[J]. 数据分析与知识发现, 2019, 3(8): 77-87.
[10] Li Jie,Yang Fang,Xu Chenxi. A Personalized Recommendation Algorithm with Temporal Dynamics and Sequential Patterns[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[11] Wang Daoping,Jiang Zhongyang,Zhang Boqing. Collaborative Filtering Algorithm Based on Gray Correlation Analysis and Time Factor[J]. 数据分析与知识发现, 2018, 2(6): 102-109.
[12] Wang Yong,Wang Yongdong,Guo Huifang,Zhou Yumin. Measuring Item Similarity Based on Increment of Diversity[J]. 数据分析与知识发现, 2018, 2(5): 70-76.
[13] Hua Lingfeng,Yang Gaoming,Wang Xiujun. Recommending Diversified News Based on User’s Locations[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[14] Xue Fuliang,Liu Junling. Improving Collaborative Filtering Recommendation Based on Trust Relationship Among Users[J]. 数据分析与知识发现, 2017, 1(7): 90-99.
[15] Qin Xingxin,Wang Rongbo,Huang Xiaoxi,Chen Zhiqun. Slope One Collaborative Filtering Algorithm Based on Multi-Weights[J]. 数据分析与知识发现, 2017, 1(6): 65-71.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938