Please wait a minute...
New Technology of Library and Information Service  2013, Vol. 29 Issue (1): 36-42    DOI: 10.11925/infotech.1003-3513.2013.01.06
Current Issue | Archive | Adv Search |
Research on Three-dimensional Personalized Recommendation Approach for C2C E-commerce Platform
Ai Danxiang1, Zuo Hui2, Yang Jun1
1. School of Management, Cuangdong University of Technology, Cuangzhou 510520, China;
2. School of Economics and Commerce, Guangdong University of Technology, Guangzhou 510520, China
Export: BibTeX | EndNote (RIS)      
Abstract  This paper defines a three-dimensional recommendation space and recommendation task in C2C e-commerce platforms, which are different from B2C ones, and proposes a three-dimensional personalized recommendation approach, which extends the traditional two-dimensional collaborative filtering method and content-based recommendation method. The proposed approach firstly calculates seller similarities using seller features, and fills the three-dimensional rating set based on sales relations and seller similarities to solve the data sparsity problem. Then it calculates buyer similarities using historical ratings to decide neighbors and predict unknown ratings. A true data experiment proves that the proposed approach is effective to solve the personalized recommendation problem in C2C platforms and has good performance when recommending seller and product combinations.
Key wordsCustomer to Customer      Three-dimensional recommendation      Content-based recommendation      Collaborative filtering      Personalized recommendation     
Received: 04 December 2012      Published: 29 March 2013
:  TP391  

Cite this article:

Ai Danxiang, Zuo Hui, Yang Jun. Research on Three-dimensional Personalized Recommendation Approach for C2C E-commerce Platform. New Technology of Library and Information Service, 2013, 29(1): 36-42.

URL:     OR

[1] 刘平峰,聂规划,陈冬林.电子商务推荐系统研究综述[J]. 情报杂志,2007,26(9):46-50.(Liu Pingfeng, Nie Guihua,Chen Donglin.A Survey: Electronic Commerce Recommender Systems[J]. Journal of Information, 2007, 26(9): 46-50.)
[2] 许海玲,吴潇,李晓东,等.互联网推荐系统比较研究[J]. 软件学报,2009,20(2):350-362.(Xu Hailing, Wu Xiao, Li Xiaodong, et al. Comparison Study of Internet Recommendation System[J]. Journal of Software, 2009, 20(2): 350-362.)
[3] Adomavicius G, Sankaranarayanan R, Sen S, et al. Incorporating Contextual Information in Recommender Systems Using a Multidimensional Approach [J]. ACM Transactions on Information Systems, 2005, 23(1): 103-145.
[4] Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
[5] Yu C, Xu J P, Du X Y. Recommendation Algorithm Combining the User-based Classified Regression and the Item-based Filtering [C]. In: Proceedings of the 8th International Conference on Electronic Commerce. New York: ACM Press, 2006: 574-578.
[6] 郭艳红,邓贵仕.协同过滤的一种个性化推荐算法研究[J]. 计算机应用研究,2008,25(1):39-41,58.(Guo Yanhong, Deng Guishi. Improved Personalized Recommendation Algorithm in Collaborative Filtering[J]. Application Research of Computers, 2008, 25(1): 39-41, 58.)
[7] Resnick P, Iacovou N, Suchak M, et al. GroupLens: An Open Architecture for Collaborative Filtering of Netnews [C]. In: Proceedings of ACM 1994 Conference on Computer Supported Cooperative Work. New York: ACM Press, 1994: 175-186.
[8] Shardanand U, Maes P. Social Information Filtering: Algorithms for Automating “Word of Mouth” [C].In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 1995: 210-217.
[9] Sarwar B, Karypis G, Konstan J, et al. Item-Based Collaborative Filtering Recommendation Algorithms [C]. In: Proceedings of the 10th International Conference on World Wide Web. New York: ACM Press, 2001: 285-295.
[10] Ricci F, Rokach L, Shapira B, et al.Recommender Systems Handbook [M].Berlin: Springer-Verlag, 2011: 1-842.
[11] Balabanovic M, Shoham Y. Fab: Content-based, Collaborative Recommendation [J]. Communications of the ACM, 1997, 40(3): 66-72.
[12] 李雪峰,刘鲁,张曌.基于协同过滤的在线拍卖商品推荐[J]. 计算机工程,2006,32(23):18-20.(Li Xuefeng,Liu Lu,Zhang Zhao. Recommendation of Online Auction Items Based on Collaborative Filtering [J]. Computer Engineering, 2006, 32(23): 18-20.)
[13] Wu S J, Wang S, Liu X M. A Seller Selection Model Study Based on Online Credit Analysis in C2C e-Business Environment[C].In: Proceedings of the 2nd International Conference on e-Business and Information System Security(EBISS),Wuhan,China.IEEE, 2010:1-4.
[14] Wang J C, Chiu C C. Recommending Trusted Online Auction Sellers Using Social Network Analysis [J]. Expert Systems with Applications,2008, 34(3): 1666-1679.
[15] 刘建国,周涛,郭强,等.个性化推荐系统评价方法综述[J]. 复杂系统与复杂性科学,2009,6(3):1-8.(Liu Jianguo, Zhou Tao, Guo Qiang, et al. Overview of the Evaluated Algorithms for the Personal Recommendation Systems[J]. Complex Systems and Complexity Science, 2009, 6(3):1-8.)
[16] Olson D L, Delen D. Advanced Data Mining Techniques [M].Berlin: Springer, 2008.
[1] Wu Yanwen, Cai Qiuting, Liu Zhi, Deng Yunze. Digital Resource Recommendation Based on Multi-Source Data and Scene Similarity Calculation[J]. 数据分析与知识发现, 2021, 5(11): 114-123.
[2] Li Zhenyu, Li Shuqing. Deep Collaborative Filtering Algorithm with Embedding Implicit Similarity Groups[J]. 数据分析与知识发现, 2021, 5(11): 124-134.
[3] Ding Hao, Ai Wenhua, Hu Guangwei, Li Shuqing, Suo Wei. A Personalized Recommendation Model with Time Series Fluctuation of User Interest[J]. 数据分析与知识发现, 2021, 5(11): 45-58.
[4] Yang Chen, Chen Xiaohong, Wang Chuhan, Liu Tingting. Recommendation Strategy Based on Users’ Preferences for Fine-Grained Attributes[J]. 数据分析与知识发现, 2021, 5(10): 94-102.
[5] Yang Heng,Wang Sili,Zhu Zhongming,Liu Wei,Wang Nan. Recommending Domain Knowledge Based on Parallel Collaborative Filtering Algorithm[J]. 数据分析与知识发现, 2020, 4(6): 15-21.
[6] Su Qing,Chen Sizhao,Wu Weimin,Li Xiaomei,Huang Tiankuan. Personalized Recommendation Model Based on Collaborative Filtering Algorithm of Learning Situation[J]. 数据分析与知识发现, 2020, 4(5): 105-117.
[7] Zheng Songyin,Tan Guoxin,Shi Zhongchao. Recommending Tourism Attractions Based on Segmented User Groups and Time Contexts[J]. 数据分析与知识发现, 2020, 4(5): 92-104.
[8] Ding Yong,Chen Xi,Jiang Cuiqing,Wang Zhao. Predicting Online Ratings with Network Representation Learning and XGBoost[J]. 数据分析与知识发现, 2020, 4(11): 52-62.
[9] Fusen Jiao,Shuqing Li. Collaborative Filtering Recommendation Based on Item Quality and User Ratings[J]. 数据分析与知识发现, 2019, 3(8): 62-67.
[10] Shan Li,Yehui Yao,Hao Li,Jie Liu,Karmapemo. ISA Biclustering Algorithm for Group Recommendation[J]. 数据分析与知识发现, 2019, 3(8): 77-87.
[11] Yiwen Zhang,Chenkun Zhang,Anju Yang,Chengrui Ji,Lihua Yue. A Conditional Walk Quadripartite Graph Based Personalized Recommendation Algorithm[J]. 数据分析与知识发现, 2019, 3(4): 117-125.
[12] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[13] Hao Ding,Shuqing Li. Personalized Recommendation Based on Predictive Analysis of User’s Interests[J]. 数据分析与知识发现, 2019, 3(11): 43-51.
[14] Li Jie,Yang Fang,Xu Chenxi. A Personalized Recommendation Algorithm with Temporal Dynamics and Sequential Patterns[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[15] Wang Daoping,Jiang Zhongyang,Zhang Boqing. Collaborative Filtering Algorithm Based on Gray Correlation Analysis and Time Factor[J]. 数据分析与知识发现, 2018, 2(6): 102-109.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938