Please wait a minute...
New Technology of Library and Information Service  2013, Vol. 29 Issue (3): 65-70    DOI: 10.11925/infotech.1003-3513.2013.03.11
Current Issue | Archive | Adv Search |
Study of Public Sentiment Transfer Based on Complex Online Network ——Evolutionary Game Angle
Wei Jing1, Zhu Hengmin1, Hong Xiaojuan1, Song Ruixiao2, Xu Zan2
1. Research Center of Industry Information Security and Emergency Management, Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
2. College of Economic and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Export: BibTeX | EndNote (RIS)      
Abstract  Based on the complex network, this paper studies the net-mediated public sentiment transfer game behavior in the Internet dynamic state. It sets up the network public sentiment transfer evolution game model, emulates the whole process of evolution game, and gets the stable evolution strategy. As a result, the beginning choice of the strategy has an important influence to the net-mediated public sentiment transfer. With the grown up rate of the game partner who has the strategy of “transfer”, the more of the network link numbers, the quicker the balanced state realizes. And transfer process in the public opinion has stagnant and migrated phenomenon, which eventually makes public sentiment towards a recession with population pressure. This paper also gives some advices to promote and control the behavior of net-mediated public sentiment transfer.
Key wordsNet-mediated public sentiment      Public sentiment transfer      Complex network      Evolutionary game     
Received: 18 February 2013      Published: 14 May 2013
:  C912.63  

Cite this article:

Wei Jing, Zhu Hengmin, Hong Xiaojuan, Song Ruixiao, Xu Zan. Study of Public Sentiment Transfer Based on Complex Online Network ——Evolutionary Game Angle. New Technology of Library and Information Service, 2013, 29(3): 65-70.

URL:     OR

[1] 王绍明.网络舆论的焦点成因分析[J]. 东南传播 ,2009,62(10):57-58. (Wang Shaoming. Causes of Network Public Opinion Focus [J]. Southeast Communication, 2009, 62(10):57-58.)
[2] 田卉,柯惠新.网络环境下的舆论形成模式及调控分析[J]. 现代传播 ,2010(1):40-45.(Tian Hui, Ke Huixin. Analysis of Formation and Guiding the Public Opinion in Network Environment [J]. Modern Communication, 2010(1):40-45.)
[3] Noelle-Neumann E. The Spiral of Silence: Public Opinion-Our Social Skin [M]. Chicago: University of Chicago Press, 1993.
[4] 朱国东.关于网络舆论演进的若干问题研究[D].北京:北京交通大学,2009.(Zhu Guodong. Research on Some Issues About Network Opinion Evolution [D].Beijing: Beijing Jiaotong University, 2009.)
[5] Watts D J, Dodds P S. Influentials, Networks, and Public Opinion Formation [J]. Journal of Consumer Research, 2007, 34(4): 441-458.
[6] 张明善,占英春.网络舆情传播对群体性突发事件的影响模型[J]. 西南民族大学学报:自然科学版 ,2011,37(3):331-335.(Zhang Mingshan, Zhan Yingchun. Influence of Network Public Opinion Dissemination of the Unexpected Events of the Group Model [J]. Journal of Southwest University for Nationalities:Natural Science Edition,2011,37(3):331-335.)
[7] 谢辉.组织隐性知识整合及扩散机制研究[D].长沙:中南大学,2005.(Xie Hui. Study on Organization Tacit Knowledge Integration and Diffusion Mechanism [D].Changsha:Central South University, 2005.)
[8] 安世虎.组织内部知识共享研究[D].天津:天津大学,2005. (An Shihu. Study on Knowledge Sharing Within Organizations [D].Tianjin:Tianjin University, 2005.)
[9] 张四海.基于社会网络和博弈论的合作理论研究[D].合肥:中国科学技术大学,2006.(Zhang Sihai. Study on the Theory of Social Network and Cooperation Based on Game Theory [D]. Hefei:University of Science and Technology of China, 2006.)
[10] 朱庆华.《知识元挖掘》的评介——兼议情报学的理论研究[J]. 情报科学 ,2006,24(12):1899-1902. (Zhu Qinghua. Book Review of Knowledge Element Mining[J].Information Science, 2006, 24(12):1899-1902.)
[11] Brookes B C. The Foundations of Information Science, Part I: Philosophical Aspects [J]. Journal of Information Science, 1980, 2(3-4):125-133.
[12] Quigley E J, Debons A. Interrogative Theory of Information and Knowledge [C].In: Proceedings of the 1999 ACM SIGCPR Conference on Computer Personnel Research (SIGCPR’99). New York: ACM Press, 1999:4-10.
[13] 温有奎,徐国华.信息与知识变换[J]. 情报学报 ,2002,21(5):613-617.(Wen Youkui,Xu Guohua. Transformation of Information to Knowledge [J]. Journal of the China Society for Scientific and Technical Information, 2002, 21(5):613-617.)
[14] 严浩仁,贾生华.试论知识特性与企业知识共享机制[J]. 研究与发展管理 ,2002, 14(3):16-20, 31. (Yan Haoren, Jia Shenghua . Knowledge Nature and Knowledge Sharing Mechanism in Firms [J]. R & D Management, 2002, 14(3):16-20, 31.)
[15] 任志安.企业知识共享网络理论及其治理研究[D].成都:西南交通大学,2006.(Ren Zhian. Study on the Theory of Enterprise Knowledge Sharing Network and Its Governance[D].Chengdu:Southwest Jiaotong University, 2006.)
[16] Wu F, Huberman B A, Adamic L A, et al. Information Flow in Social Groups[J].Physica A: Statistical Mechanics and Its Applications,2004,337(1):327-335.
[17] Costa L F. Learning About Knowledge: A Complex Network Approach [J]. Physical Review E, 2006, 74(2).
[18] 毕宏音.网络舆情形成与变动中的群体影响分析[J]. 天津大学学报:社科版 ,2007, 9(3):270-274. (Bi Hongyin. Group Influence in the Formation and Change of Network Public Opinion [J]. Journal of Tianjin University:Social Sciences, 2007, 9(3):270-274.)
[19] 方薇, 何留进, 孙凯,等.采用元胞自动机的网络舆情传播模型研究[J]. 计算机应用 ,2010,30(3):751-755. (Fang Wei, He Liujin, Sun Kai, et al. Study on Dissemination Model of Network Public Sentiment Based on Cellular Automata [J].Journal of Computer Applications, 2010, 30(3):751-755.)
[1] Chen Wenjie,Wen Yi,Yang Ning. Fuzzy Overlapping Community Detection Algorithm Based on Node Vector Representation[J]. 数据分析与知识发现, 2021, 5(5): 41-50.
[2] Li Wenzheng,Gu Yijun,Yan Hongli. Predicting Community Numbers with Network Bayesian Information Criterion[J]. 数据分析与知识发现, 2020, 4(4): 72-82.
[3] Guang Zhu,Hu Liu,Xinmeng Du. Health APPs and Privacy Concerns: A Three-Entities Game-theoretic Approach[J]. 数据分析与知识发现, 2019, 3(5): 93-106.
[4] Xiang Li,Xiaodong Qian. Research on Impact of Commodity Online Evaluation for Consumption Convergence[J]. 数据分析与知识发现, 2019, 3(3): 102-111.
[5] Jiao Yan,Jing Ma,Kang Fang. Computing Text Semantic Similarity with Syntactic Network of Co-occurrence Distance[J]. 数据分析与知识发现, 2019, 3(12): 93-100.
[6] Wuxuan Jiang,Huixiang Xiong,Jiaxin Ye,Ning An. Creating Dynamic Tags for Social Networking Groups[J]. 数据分析与知识发现, 2019, 3(10): 98-109.
[7] Zhu Guang,Feng Mining,Zhang Weiwei. Incentive Investments on Information Security for Libraries: An Evolutionary Game-theory Approach[J]. 数据分析与知识发现, 2018, 2(6): 13-24.
[8] Qian Xiaodong,Li Min. Identifying E-commerce User Types Based on Complex Network Overlapping Community[J]. 数据分析与知识发现, 2018, 2(6): 79-91.
[9] Chen Yunwei,Zhang Ruihong. Comparing on Community Detection Algorithms for Information Mining[J]. 数据分析与知识发现, 2018, 2(10): 84-94.
[10] Liu Bingyao,Ma Jing,Li Xiaofeng. Topic Representation Model Based on “Feature Dimensionality Reduction”[J]. 数据分析与知识发现, 2017, 1(11): 53-61.
[11] Wu Jiang,Chen Jun,Zhang Jinfan. A Knowledge Supply-Demand Simulation System for Collaborative Innovation[J]. 现代图书情报技术, 2016, 32(9): 27-33.
[12] Ye Teng,Han Lichuan,Xing Chunxiao,Zhang Yan. Knowledge Dissemination Mechanism in Virtual Communities: Case Study Based on Complex Network Theory[J]. 现代图书情报技术, 2016, 32(7-8): 70-77.
[13] Lixin Xia,Ying Tan. Analysis and Visualization of the LOD Network Structure[J]. 现代图书情报技术, 2016, 32(1): 65-72.
[14] Yang Ning, Huang Feihu, Wen Yi, Chen Yunwei. An Opinion Evolution Model Based on the Behavior of Micro-blog Users[J]. 现代图书情报技术, 2015, 31(12): 34-41.
[15] Du Kun, Liu Huailiang, Guo Lujie. Study on the Modified Method of Feature Weighting with Complex Networks[J]. 现代图书情报技术, 2015, 31(11): 26-32.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938