Please wait a minute...
New Technology of Library and Information Service  2013, Vol. Issue (6): 49-54    DOI: 10.11925/infotech.1003-3513.2013.06.08
Current Issue | Archive | Adv Search |
Sentiment Analysis of Product Reviews by means of Cross-domain Transfer Learning
Zhang Zhiwu
Nanjing University of Posts and Telecommunications Library, Nanjing 210003, China
Export: BibTeX | EndNote (RIS)      
Abstract  Aiming at the problem of sentiment analysis of incomplete product reviews data, this paper proposes a cross-domain sentiment analysis method based on spectral clustering and transfer learning. With the help of domain-independent words as a bridge, using spectral clustering algorithm to align domain-specific words from different domains into unified clusters, it can reduce the gap between domain-specific words of the two domains, and can improve the accuracy of sentiment classifiers in the target domain. Experiments studies are carried out to show the efficiency and superiority of the proposed approach in solving the problem of cross-domain sentiment analysis of product reviews.
Key wordsSentiment analysis      Transfer learning      Cross-domain      Spectral clustering      Product reviews     
Received: 25 March 2013      Published: 24 July 2013
:  TP391  

Cite this article:

Zhang Zhiwu. Sentiment Analysis of Product Reviews by means of Cross-domain Transfer Learning. New Technology of Library and Information Service, 2013, (6): 49-54.

URL:     OR

[1] Pang B, Lee L. Opinion Mining and Sentiment Analysis[J]. Foundations and Trends in Information Retrieval, 2008, 2(1/2): 1-135.
[2] 马凤闸,吴江宁,杨光飞.基于双重选择策略的跨领域情感倾向性分析[J]. 情报学报,2012, 31(11):1202-1209. (Ma Fengzha, Wu Jiangning, Yang Guangfei. Cross-domain Sentiment Analysis Based on Double Selection Strategy[J]. Journal of the China Society for Scientific and Technical Information, 2012, 31(11):1202-1209.)
[3] 黄贤立.基于典型相关分析的多视图跨领域情感分类[J]. 计算机工程,2010,34(24):186-188.(Huang Xianli. Multi-view Cross Domain Sentiment Classification Based on Canonical Correlation Analysis[J].Computer Engineering, 2010,34(24):186-188.)
[4] Blitzer J, Dredze M, Pereira F. Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification[C].In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics.2007:440-447.
[5] Tan S B, Cheng X Q, Wang Y F, et al. Adapting Naive Bayes to Domain Adaptation for Sentiment Analysis[C].In: Proceedings of the 31st European Conference on IR Research on Advances in Information Retrieval. Berlin, Heidelberg: Springer-Verlag,2009:337-349.
[6] Pan S J, Ni X C, Sun J T, et al. Cross-domain Sentiment Classification via Spectral Feature Alignment[C]. In: Proceedings of the 19th International Conference on World Wide Web. New York, NY, USA: ACM,2010:751-760.
[7] Tan S B, Wu G W, Tang H F, et al. A Novel Scheme for Domain-transfer Problem in the Context of Sentiment Analysis[C]. In: Proceedings of the 16th ACM Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2007: 979-982.
[8] 杨文让,王中卿,李培峰,等.基于质心迁移的领域适应性情感分类[J]. 计算机应用与软件,2011, 28(12):26-28.(Yang Wenrang, Wang Zhongqing, Li Peifeng, et al. Adaptive Domain Sentiment Classification Based on Centroid Transfer[J]. Computer Applications and Software, 2011, 28(12):26-28.)
[9] 张慧,李寿山,李培峰,等.基于评价对象类别的跨领域情感分类方法研究[J]. 计算机科学,2013, 40(1):229-232.(Zhang Hui, Li Shoushan, Li Peifeng, et al. Cross-domain Sentiment Classification with Opinion Target Categorization [J].Computer Science,2013,40(1):229-232.)
[10] 张莉.跨领域中文评论的情感分类研究[J]. 计算机应用研究,2013,30(3):736-741.(Zhang Li. Research on Sentiment Analysis of Cross-domain Chinese Comments[J].Application Research of Computers, 2013,30(3):736-741.)
[11] Chung F R K. Spectral Graph Theory[M]. American Mathematical Society,1997.
[12] 李新福,赵蕾蕾,何海斌,等.使用Logistic回归模型进行中文文本分类[J]. 计算机工程与应用,2009, 45(14):152-154.(Li Xinfu, Zhao Leilei, He Haibin,et al. Using Logistic Regression Model for Chinese Text Categorization[J].Computer Engineering and Applications,2009,45(14):152-154.)
[1] Lu Quan, He Chao, Chen Jing, Tian Min, Liu Ting. A Multi-Label Classification Model with Two-Stage Transfer Learning[J]. 数据分析与知识发现, 2021, 5(7): 91-100.
[2] Xu Yuemei, Wang Zihou, Wu Zixin. Predicting Stock Trends with CNN-BiLSTM Based Multi-Feature Integration Model[J]. 数据分析与知识发现, 2021, 5(7): 126-138.
[3] Zhong Jiawa,Liu Wei,Wang Sili,Yang Heng. Review of Methods and Applications of Text Sentiment Analysis[J]. 数据分析与知识发现, 2021, 5(6): 1-13.
[4] Liu Tong,Liu Chen,Ni Weijian. A Semi-Supervised Sentiment Analysis Method for Chinese Based on Multi-Level Data Augmentation[J]. 数据分析与知识发现, 2021, 5(5): 51-58.
[5] Wang Yuzhu,Xie Jun,Chen Bo,Xu Xinying. Multi-modal Sentiment Analysis Based on Cross-modal Context-aware Attention[J]. 数据分析与知识发现, 2021, 5(4): 49-59.
[6] Li Feifei,Wu Fan,Wang Zhongqing. Sentiment Analysis with Reviewer Types and Generative Adversarial Network[J]. 数据分析与知识发现, 2021, 5(4): 72-79.
[7] Chang Chengyang,Wang Xiaodong,Zhang Shenglei. Polarity Analysis of Dynamic Political Sentiments from Tweets with Deep Learning Method[J]. 数据分析与知识发现, 2021, 5(3): 121-131.
[8] Zhang Mengyao, Zhu Guangli, Zhang Shunxiang, Zhang Biao. Grouping Microblog Users of Trending Topics Based on Sentiment Analysis[J]. 数据分析与知识发现, 2021, 5(2): 43-49.
[9] Han Pu, Zhang Wei, Zhang Zhanpeng, Wang Yuxin, Fang Haoyu. Sentiment Analysis of Weibo Posts on Public Health Emergency with Feature Fusion and Multi-Channel[J]. 数据分析与知识发现, 2021, 5(11): 68-79.
[10] Lv Huakui,Liu Zhenghao,Qian Yuxing,Hong Xudong. Relationship Between Financial News and Stock Market Fluctuations[J]. 数据分析与知识发现, 2021, 5(1): 99-111.
[11] Xi Yunjiang, Du Diedie, Liao Xiao, Zhang Xuehong. Analyzing & Clustering Enterprise Microblog Users with Supernetwork[J]. 数据分析与知识发现, 2020, 4(8): 107-118.
[12] Xu Hongxia,Yu Qianqian,Qian Li. Studying Content Interaction Data with Topic Model and Sentiment Analysis[J]. 数据分析与知识发现, 2020, 4(7): 110-117.
[13] Jiang Lin,Zhang Qilin. Research on Academic Evaluation Based on Fine-Grain Citation Sentimental Quantification[J]. 数据分析与知识发现, 2020, 4(6): 129-138.
[14] Shi Lei,Wang Yi,Cheng Ying,Wei Ruibin. Review of Attention Mechanism in Natural Language Processing[J]. 数据分析与知识发现, 2020, 4(5): 1-14.
[15] Zhao Ping,Sun Lianying,Tu Shuai,Bian Jianling,Wan Ying. Identifying Scenic Spot Entities Based on Improved Knowledge Transfer[J]. 数据分析与知识发现, 2020, 4(5): 118-126.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938