Please wait a minute...
New Technology of Library and Information Service  2013, Vol. Issue (6): 63-67    DOI: 10.11925/infotech.1003-3513.2013.06.10
Current Issue | Archive | Adv Search |
Object Recognition of Network Comments Based on Conditional Random Fields
Lin Chen1,2, Wang Lancheng1
1. Department of Military Information Management, Shanghai Branch of Nanjing Institute of Politics, Shanghai 200433, China;
2. Post-doctoral Mobile Stations, Shanghai Branch of Nanjing Institute of Politics, Shanghai 200433, China
Export: BibTeX | EndNote (RIS)      
Abstract  Combined with the characteristic of comment object, this paper gives an identification method based on conditional random fields. Without domain knowledge, the new method introduces characteristics word and clues word, then transforms comment object recognition problem into solving maximum probability sequence. The experimental results show that this method can completely, effectively extract comment objects from network comments.
Key wordsComment      Comment object      Public opinion      Conditional random fields     
Received: 13 April 2013      Published: 24 July 2013
:  TP391  

Cite this article:

Lin Chen, Wang Lancheng. Object Recognition of Network Comments Based on Conditional Random Fields. New Technology of Library and Information Service, 2013, (6): 63-67.

URL:     OR

[1] Hu M, Liu B. Mining Opinion Features in Customer Reviews [C]. In: Proceedings of the 19th National Conference on Artificial Intelligence (AAAI’04), San Jose, California. AAAI Press, 2004: 755-760.
[2] Popescu A, Etzioni O. Extracting Product Features and Opinions from Reviews [C]. In: Proceedings of the Joint Conference of Human Language Technology and Empirical Methods in Natural Language Processing (HLT/EMNLP-05), Vancouver,Canada. Stroudsburg: Association for Computational Linguistics, 2005: 339-346.
[3] 刘鸿宇, 赵妍妍, 秦兵, 等. 评价对象抽取及其倾向性分析[J]. 中文信息学报, 2010, 24(1): 84-88.(Liu Hongyu, Zhao Yanyan, Qin Bing, et al. Comment Target Extraction and Sentiment Classification[J]. Journal of Chinese Information Processing, 2010, 24(1): 84-88.)
[4] 徐叶强,朱艳辉,王文华, 等. 中文产品评论中评价对象的识别研究[J]. 计算机工程, 2012, 38(20):140-143. (Xu Yeqiang, Zhu Yanhui, Wang Wenhua, et al. Research on Recognition of Evaluation Object in Chinese Product Review[J]. Computer Engineering, 2012, 38(20):140-143.)
[5] Yi J, Nasukawa T, Bunescu R, et al. Sentiment Analyzer: Extracting Sentiments about a Given Topic Using Natural Languages Processing Techniques [C]. In: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM’03), Melbourne, USA. Washington, D C: IEEE Computer Society, 2003:427-434.
[6] 刘非凡, 赵军, 吕碧波, 等. 面向商务信息抽取的产品命名实体识别研究[J]. 中文信息学报, 2006, 20(1): 7-13.(Liu Feifan, Zhao Jun, Lv Bibo, et al. Study on Product Named Entity Recognition for Business Information Extraction[J]. Journal of Chinese Information Processing, 2006, 20(1): 7-13.)
[7] Zhang S, Jia W J, Xia Y J, et al. Opinion Analysis of Product Reviews[C]. In: Proceedings of the 6th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD’09), Tianjin, China. Washington, D C: IEEE Computer Society, 2009:591-595.
[8] 徐冰, 赵铁军, 王山雨, 等. 基于浅层句法特征的评价对象抽取研究[J]. 自动化学报, 2011, 37(10):1241-1247.(Xu Bing, Zhao Tiejun, Wang Shanyu, et al. Extraction of Opinion Targets Based on Shallow Parsing Features[J]. Aata Automatica Sinica, 2011, 37(10):1241-1247.)
[9] Lafferty J D, McCallum A, Pereira F C N. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data[C]. In: Proceedings of the 18th International Conference on Machine Learning (ICML’01), Williamstown, Australia. San Francisco: Morgan Kaufmann Publishers Inc., 2001: 282-289.
[10] 周俊生, 戴新宇, 尹存燕, 等. 基于层叠条件随机场模型的中文机构名自动识别[J]. 电子学报, 2006, 34(5):804-809.(Zhou Junsheng, Dai Xinyu, Yin Cunyan, et al. Automatic Recognition of Chinese Organization Name Based on Cascaded Conditional Random Fields[J]. Aata Electronica Sinica, 2006, 34(5):804-809.)
[11] NLPIR汉语分词系统. NLPIR下载 [EB/OL].[2013-04-16]. (ICTCLAS 2013 Edition. NLPIR Download[EB/OL]. [2013-04-16].
[1] Fan Tao,Wang Hao,Wu Peng. Sentiment Analysis of Online Users' Negative Emotions Based on Graph Convolutional Network and Dependency Parsing[J]. 数据分析与知识发现, 2021, 5(9): 97-106.
[2] Wang Xiwei,Jia Ruonan,Wei Yanan,Zhang Liu. Clustering User Groups of Public Opinion Events from Multi-dimensional Social Network[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[3] Ma Yingxue,Zhao Jichang. Patterns and Evolution of Public Opinion on Weibo During Natural Disasters: Case Study of Typhoons and Rainstorms[J]. 数据分析与知识发现, 2021, 5(6): 66-79.
[4] Wang Nan,Li Hairong,Tan Shuru. Predicting of Public Opinion Reversal with Improved SMOTE Algorithm and Ensemble Learning[J]. 数据分析与知识发现, 2021, 5(4): 37-48.
[5] Xu Yabin, Sun Qiutian. Identifying Leaders and Dissemination Paths of Public Opinion[J]. 数据分析与知识发现, 2021, 5(2): 32-42.
[6] Cheng Tiejun, Wang Man, Huang Baofeng, Feng Lanping. Predicting Online Public Opinion in Emergencies Based on CEEMDAN-BP[J]. 数据分析与知识发现, 2021, 5(11): 59-67.
[7] Shao Qi,Mu Dongmei,Wang Ping,Jin Chunyan. Identifying Subjects of Online Opinion from Public Health Emergencies[J]. 数据分析与知识发现, 2020, 4(9): 68-80.
[8] Liang Ye,Li Xiaoyuan,Xu Hang,Hu Yiran. CLOpin: A Cross-Lingual Knowledge Graph Framework for Public Opinion Analysis and Early Warning[J]. 数据分析与知识发现, 2020, 4(6): 1-14.
[9] Zhao Ping,Sun Lianying,Tu Shuai,Bian Jianling,Wan Ying. Identifying Scenic Spot Entities Based on Improved Knowledge Transfer[J]. 数据分析与知识发现, 2020, 4(5): 118-126.
[10] Li Chengliang,Zhao Zhongying,Li Chao,Qi Liang,Wen Yan. Extracting Product Properties with Dependency Relationship Embedding and Conditional Random Field[J]. 数据分析与知识发现, 2020, 4(5): 54-65.
[11] Deng Jiangao,Zhang Xuan,Fu Zhu,Wei Qingming. Tracking Online Public Opinion Based on System Dynamics: Case Study of “Xiangshui Explosion Accident”[J]. 数据分析与知识发现, 2020, 4(2/3): 110-121.
[12] Liang Yanping,An Lu,Liu Jing. Topic Resonance of Micro-blogs on Similar Public Health Emergencies[J]. 数据分析与知识发现, 2020, 4(2/3): 122-133.
[13] Xiong Huixiang,Li Xiaomin,Li Yueyan. Group Recommendation Based on Attribute Mining of Book Reviews[J]. 数据分析与知识发现, 2020, 4(2/3): 214-222.
[14] Ding Shengchun,Yu Fengyang,Li Zhen. Identifying Potential Trending Topics of Online Public Opinion[J]. 数据分析与知识发现, 2020, 4(2/3): 29-38.
[15] Li He,Liu Jiayu,Shen Wang,Liu Rui,Jin Shuaiqi. Recommending Knowledge for Online Health Community Users Based on Fuzzy Cognitive Map[J]. 数据分析与知识发现, 2020, 4(12): 55-67.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938