Please wait a minute...
New Technology of Library and Information Service  2013, Vol. 29 Issue (7/8): 13-21    DOI: 10.11925/infotech.1003-3513.2013.07-08.02
Current Issue | Archive | Adv Search |
Infrastructure, Intelligence, Innovation:Driving the Data Science Agenda——A Comprehensive Review of IDCC2013
Wu Zhenxin1, Qi Yan2,3, Fu Honghu1, Liu Chao1,3, Li Wenyan1,3, Liu Xiaomin1,3, Wang Yuju1
1. National Science Library, Chinese Academy of Sciences, Beijing 100190, China;
2. The Chengdu Branch of National Science Library, Chinese Academy of Sciences, Chengdu 610041, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Export: BibTeX | EndNote (RIS)      
Abstract  This paper reviews the 8th International Digital Curation Conference systematically and comprehensively, centring on the theme of the "Infrastructure, Intelligence, Innovation: Driving the Data Science Agenda", the conventioneers present, analyze and discuss the problems about the Institutional Research Data Management, National Perspectives in Research Data Management,Repositories/Data Archives, Cloud Services, Education & Training, Confidentiality/Open Research Data, Formats & Identifiers, Cross Disciplinary Data, Arts & Humanities Data, Formats/Metadata, Data Publication detailedly, deeply and extensively, which witness the research results, current status and challenges of the theoretical and practical aspects in this realm.
Key wordsDigital curation      Research data management      Infrastructure      Intelligence      Innovation      Data science      Big data     
Received: 25 May 2013      Published: 02 September 2013




Cite this article:

Wu Zhenxin, Qi Yan, Fu Honghu, Liu Chao, Li Wenyan, Liu Xiaomin, Wang Yuju. Infrastructure, Intelligence, Innovation:Driving the Data Science Agenda——A Comprehensive Review of IDCC2013. New Technology of Library and Information Service, 2013, 29(7/8): 13-21.

URL:     OR

[1] IDCC 2013[EB/OL].[2013-04-20].
[2] Farquhar A. Digital Collections: New Challenges for Curation and New Opportunities for Data Driven Scholarship[EB/OL].[2013-04-20].
[3] Miller P. Intelligence, Insight, and the Role of Scale: Data Stories from the Business World[EB/OL].[2013-04-20]. ons/Paul_Miller_idcc13forweb.pdf.
[4] Pfeiffenberger H. From Sensor to Dissemination: Stewardship of Data in the Marine Sciences[EB/OL].[2013-04-20]. entations/0945PfeffIDCC2013.pdf.
[5] Lyon L. What is a Data Scientist?[EB/OL].[2013-04-20]. esentations/LyonIDCC13.pdf.
[6] Corti L. Are Data Curators Ever Data Scientists?[EB/OL].[2013-04-20].
[7] Edmunds S. Data Publisher[EB/OL].[2013-04-20]. ns/EdmundsIDCC13.pdf.
[8] Bennett F. Mastodon C: Big Data Done Better[EB/OL].[2013-04-20].
[9] Birney E. ELIXIR: A Bioinformatics Infrastructure[EB/OL].[2013-04-20].
[10] Beitz A. Growing an Institution's Research Data Management Capability Through Strategic Investments in Infrastructure[EB/OL].[2013-04-20].
[11] Bicarregui J. Building an Open Data Infrastructure for Research: Turning Policy into Practice[EB/OL].[2013-04-20]. ons/BicarreguiIDCC13.pdf.
[12] Cruse P. Building Services, Building Communities, Supporting Data Intensive Research[EB/OL].[2013-04-20]. ons/1145CruseIDCC2013.pdf.
[13] Thaney K. Making Research More Efficient[EB/OL].[2013-04-20].
[14] Pink C. Meeting the Data Management Compliance Challenge: Funder Expectations and Institutional Reality[EB/OL].[2013-04-20].
[15] Rice R. Implementing the Research Data Management Policy: University of Edinburgh Roadmap[EB/OL].[2013-04-20]. entations/RobinRiceIDCC2013UoERoadmap.pdf.
[16] Parsons T. Creating a Research Data Management Service[EB/OL].[2013-04-20].
[17] Rumsey S, Jefferies N. Challenges in Building an Institutional Research Data Catalogue[EB/OL].[2013-04-20].
[18] Wilson J. Towards a Unified University Infrastructure: The Data Management Roll-out at the University of Oxford[EB/OL].[2013-04-20].
[19] Groenewegen D, Treloar A. Data Management Practice in Australia – the ANDS Perspective[EB/OL].[2013-04-20]. ons/GroenewegenIDCC13.pdf.
[20] Halbert M. The Problematic Future of Research Data Management: Challenges, Opportunities, and Emerging Patterns Identified by the DataRes Project[EB/OL].[2013-04-20]. tIDCC13.pdf.
[21] Hodson S. Institutional Research Data Management Services: Progress and Challenges in the JISC Managing Research Data Programme[EB/OL].[2013-04-20]. 13.pdf.
[22] Pryor G. A Maturing Process of Engagement: Raising Data Capabilities in UK Higher Education[EB/OL].[2013-04-20]. esentations/GrahamPryorIDCC2013.pdf.
[23] Molloy L, Hodson S, Poschen M, et al. Gathering Evidence of Benefits: A Structured Approach from the Managing Research Data Programme[EB/OL].[2013-04-20].
[24] Weber N, Thomer A, Mayernik M, et al. The Product & Asset Specificity of Measuring Impact: Some Indicators of Data Use in a Research Data Archive[EB/OL].[2013-04-20]. ons/WeberIDCC13.pdf.
[25] Plale B, McDonald R H, Chandrasekar K, et al. SEAD Virtual Archive: Building a Federation of Institutional Repositories for Long-Term Data Preservation in Sustainability Science[EB/OL].[2013-04-20].
[26] Schumann N. The GESIS Data Archive for the Social Sciences: A Widely Recognised Data Archive on Its Way Towards a New Level of Trustworthiness[EB/OL].[2013-04-20]. humannGESISDataArchive.pdf.
[27] Yakel E, Faniel I M, Kriesberg A, et al. Trust in Digital Repositories[EB/OL].[2013-04-20]. berg_Yoon_IDCC82013.pdf.
[28] von Suchodoletz D, Rechert K, Valizada I. Emulation as a Service (EaaS) – Building Blocks of an Access Cloud Service[EB/OL].[2013-04-20].
[29] Rosenthal D S H, Vargas D L. Distributed Digital Preservation in the Cloud[EB/OL].[2013-04-20].
[30] Kelly K. Model Development for Scientific Data Curation Education[EB/OL].[2013-04-20].
[31] Carlson J, Johnston L, Westra B, et al. Developing an Understanding of Data Management Education: A Report from the Data Information Literacy Project[EB/OL].[2013-04-20]. ons/CarlsonIDCC13.pdf.
[32] Scott M, Boardman R, Reed P, et al. Research Data Management Education for Future Curators[EB/OL].[2013-04-20]. entations/MarkScottIDCC13.pdf.
[33] Smaele M. Data Intelligence Training for Library Staff[EB/OL].[2013-04-20].
[34] Lagoze C, Block W C, Williams J, et al. Data Management of Confidential Data[EB/OL].[2013-04-20].
[35] Peer L. Participant Confidentiality and Open Research Data[EB/OL].[2013-04-20]. ResearchData.pdf.
[36] Lyle J, Alter G. Archiving and Providing Access to Confidential Social Science Data[EB/OL].[2013-04-20].
[37] Corti L. Enabling Access to UK Social Science Data across the Disclosure Spectrum[EB/OL].[2013-04-20].
[38] Bortoli S, Bouquet P, Bazzanella B. Can Persistent Identifiers Be also Cool[EB/OL].[2013-04-20]. 13.pdf.
[39] Spencer R. The Skeleton Test Corpus[EB/OL].[2013-04-20].
[40] Austin T. Prenormative Research into Standard Messaging Formats for Engineering Materials Data[EB/OL].[2013-04-20]. esentations/AustinIDCC13.pdf.
[41] Bicarregui J, Gray N, Henderson R, et al. Data Management and Preservation Planning for Big Science[EB/OL].[2013-04-20].
[42] Wittenberg P. EUDAT: A New Cross-Disciplinary Data Infrastructure for Science[EB/OL].[2013-04-20].
[43] van den Heuvel H. The CLARIN-NL Data Curation Service: Bringing Data to the Foreground[EB/OL].[2013-04-20].
[44] Garrett L, Gramstadt M, Silva C. Here, KAPTUR this! Identifying and Selecting the Infrastructure Required to Support the Curation and Preservation of Visual Arts Research Data[EB/OL].[2013-04-20].
[45] Guy M, Donnelly M, Molloy L. Pinning It Down: Towards a Practical Definition of 'Research Data' for Creative Arts Institutions[EB/OL].[2013-04-20].
[46] Yarmey L, Baker K. Toward Standardization: A Participatory Framework for the Process of Developing Scientific Metadata Standards[EB/OL].[2013-04-20].
[47] Hoogerwerf M. Linking Data & Publications: Solving Multi-disciplinary Challenges for OpenAIREplus[EB/OL].[2013-04-20].
[48] Callaghan S, Murphy F, Tedds J, et al. Processes and Procedures for Data Publication: A Case Study in the Geosciences[EB/OL].[2013-04-20].
[49] Doorn P, Dillo I, Horik R. Lies, Damned Lies and Research Data: Can Data Sharing Prevent Data Fraud?[EB/OL].[2013-04-20].
[50] Hein P, Thyssen M. The Road to Wisdom[EB/OL].[2013-04-20].
[1] Shan Xiaohong,Wang Chunwen,Liu Xiaoyan,Han Shengxi,Yang Juan. Identifying Lead Users in Open Innovation Community from Knowledge-based Perspectives[J]. 数据分析与知识发现, 2021, 5(9): 85-96.
[2] Song Ruoxuan,Qian Li,Du Yu. Identifying Academic Creative Concept Topics Based on Future Work of Scientific Papers[J]. 数据分析与知识发现, 2021, 5(5): 10-20.
[3] Lv Xueqiang,Luo Yixiong,Li Jiaquan,You Xindong. Review of Studies on Detecting Chinese Patent Infringements[J]. 数据分析与知识发现, 2021, 5(3): 60-68.
[4] Chang Zhijun,Qian Li,Xie Jing,Wu Zhenxin,Zhang Hu,Yu Qianqian,Wang Ying,Wang Yongji. Big Data Platform for Sci-Tech Literature Based on Distributed Technology[J]. 数据分析与知识发现, 2021, 5(3): 69-77.
[5] Wang Song, Yang Yang, Liu Xinmin. Discovering Potentialities of User Ideas from Open Innovation Communities with Graph Attention Network[J]. 数据分析与知识发现, 2021, 5(11): 89-101.
[6] Chen Shiji, Qiu Junping, Yu Bo. Topic Analysis of LIS Big Data Research with Overlay Mapping[J]. 数据分析与知识发现, 2021, 5(10): 51-59.
[7] Guan Peng,Wang Yuefen,Jin Jialin,Fu Zhu. Developments of Tech-Innovation Network for Patent Cooperation: Case Study of Speech Recognition in China[J]. 数据分析与知识发现, 2021, 5(1): 112-127.
[8] Zhao Yuxiang,Lian Jingwen. Review of Cultural Heritage Crowdsourcing in the Domain of Digital Humanities[J]. 数据分析与知识发现, 2021, 5(1): 36-55.
[9] Wei Ling,Li Shuying,Fang Shu. Methods and Applications for Technology Roadmap[J]. 数据分析与知识发现, 2020, 4(9): 1-14.
[10] Wang Jiandong,Yu Shiyang. Principles on Constructing National Economic Brain[J]. 数据分析与知识发现, 2020, 4(7): 2-17.
[11] Qiu Erli,He Hongwei,Yi Chengqi,Li Huiying. Research on Public Policy Support Based on Character-level CNN Technology[J]. 数据分析与知识发现, 2020, 4(7): 28-37.
[12] Jiandong Wang. Monitoring and Forecasting Economic Performance with Big Data[J]. 数据分析与知识发现, 2020, 4(1): 12-26.
[13] Beibei Kong,Jing Xie,Li Qian,Zhijun Chang,Zhenxin Wu. Methodology and Tools to Enrich Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(7): 113-122.
[14] Xiaozhou Dong,Xinkang Chen. E-Coupon and Economic Performance of E-commerce[J]. 数据分析与知识发现, 2019, 3(6): 42-49.
[15] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938