Please wait a minute...
New Technology of Library and Information Service  2013, Vol. 29 Issue (9): 30-34    DOI: 10.11925/infotech.1003-3513.2013.09.05
Current Issue | Archive | Adv Search |
Study on Keyword Extraction Using Word Position Weighted TextRank
Xia Tian1,2
Key Laboratory of Data Engineering and Knowledge Engineering of Ministry of Education, Renmin University of China, Beijing 100872, China) (School of Information Resource Management, Renmin University of China, Beijing 100872, China
Export: BibTeX | EndNote (RIS)      
Abstract  The keyword extraction problem is taken as a word importance ranking problem. In this paper,candidate keyword graph is constructed based on TextRank, and the influences of word coverage, location and frequency are used to calculate the probability transition matrix, then, the word score is calculated by iterative method, and the top N candidate keywords are picked as the final results. Experimental results show that the proposed word position weighted TextRank method is better than the traditional TextRank method and LDA topic model method.
Key wordsKeyword extraction      Word rank      TextRank      Graph model      LDA     
Received: 01 July 2013      Published: 27 September 2013
:  G350  

Cite this article:

Xia Tian. Study on Keyword Extraction Using Word Position Weighted TextRank. New Technology of Library and Information Service, 2013, 29(9): 30-34.

URL:     OR

[1] Mihalcea R, Tarau P. TextRank: Bringing Order into Texts[C]. In: Proceedings of Empirical Methods in Natural Language Processing, Barcelona, Spain. 2004:404-411.
[2] Frank E, Paynter G W, Witten I H, et al. Domain-Specific Keyphrase Extraction[C]. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence, Stockholm, Sweden. 1999: 668-673.
[3] Turney P D. Learning Algorithms for Keyphrase Extraction[J]. Information Retrieval, 2000, 2(4):303-336.
[4] Pasquier C. Task 5: Single Document Keyphrase Extraction Using Sentence Clustering and Latent Dirichlet Allocation[C]. In: Proceedings of the 5th International Workshop on Semantic Evaluation. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010: 154-157.
[5] 石晶,李万龙. 基于LDA模型的主题词抽取方法[J]. 计算机工程, 2010, 36(19):81-83.(Shi Jing, Li Wanlong. Topic Words Extraction Method Based on LDA Model[J]. Computer Engineering, 2010, 36(19): 81-83.)
[6] 刘俊,邹东升,邢欣来,等. 基于主题特征的关键词抽取[J]. 计算机应用研究, 2012, 29(11): 4224-4227. (Liu Jun, Zou Dongsheng, Xing Xinlai, et al. Keyphrase Extraction Based on Topic Feature [J]. Application Research of Computers, 2012, 29(11): 4224-4227.)
[7] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[8] Page L, Brin S, Motwani R, et al. The PageRank Citation Ranking: Bringing Order to the Web [R]. Stanford Digital Library Technologies Project,1998.
[9] Rajaraman A, Ullman J D. Mining of Massive Datasets[M]. Cambridge University Press, 2012: 171-173.
[10] 夏天. 中心网页中主题网页链接的自动抽取[J]. 山东大学学报:理学版, 2012, 47(5): 25-31. (Xia Tian. Automatic Extracting Topic Page Links from Hub Page[J]. Journal of Shandong University: Natural Science, 2012, 47(5): 25-31.)
[11] 夏天. 基于扩展标记树的网页正文抽取[J]. 广西师范大学学报:自然科学版, 2011, 29(1): 133-137. (Xia Tian. Content Extraction of Web Page Based on Extended Label Tree[J]. Journal of Guangxi Normal University: Natural Science Edition, 2011, 29(1): 133-137.)
[1] Shan Xiaohong,Wang Chunwen,Liu Xiaoyan,Han Shengxi,Yang Juan. Identifying Lead Users in Open Innovation Community from Knowledge-based Perspectives[J]. 数据分析与知识发现, 2021, 5(9): 85-96.
[2] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[3] Yan Qiang,Zhang Xiaoyan,Zhou Simin. Extracting Keywords Based on Sememe Similarity[J]. 数据分析与知识发现, 2021, 5(4): 80-89.
[4] Yi Huifang,Liu Xiwen. Analyzing Patent Technology Topics with IPC Context-Enhanced Context-LDA Model[J]. 数据分析与知识发现, 2021, 5(4): 25-36.
[5] Wang Hongbin,Wang Jianxiong,Zhang Yafei,Yang Heng. Topic Recognition of News Reports with Imbalanced Contents[J]. 数据分析与知识发现, 2021, 5(3): 109-120.
[6] Wang Wei, Gao Ning, Xu Yuting, Wang Hongwei. Topic Evolution of Online Reviews for Crowdfunding Campaigns[J]. 数据分析与知识发现, 2021, 5(10): 103-123.
[7] Shen Zhihong,Zhao Zihao,Wang Haibo. Big Data Technology Stack Shifting: From SQL Centric to Graph Centric[J]. 数据分析与知识发现, 2020, 4(7): 50-65.
[8] Xia Tian. Extracting Key-phrases from Chinese Scholarly Papers[J]. 数据分析与知识发现, 2020, 4(7): 76-86.
[9] Cai Yongming,Liu Lu,Wang Kewei. Identifying Key Users and Topics from Online Learning Community[J]. 数据分析与知识发现, 2020, 4(6): 69-79.
[10] Ye Guanghui,Zeng Jieyan,Hu Jinglan,Bi Chongwu. Analyzing Public Sentiments from the Perspective of City Profiles[J]. 数据分析与知识发现, 2020, 4(4): 15-26.
[11] Pan Youneng,Ni Xiuli. Recommending Online Medical Experts with Labeled-LDA Model[J]. 数据分析与知识发现, 2020, 4(4): 34-43.
[12] Liu Yuwen,Wang Kai. Finding Geographic Locations of Popular Online Topics[J]. 数据分析与知识发现, 2020, 4(2/3): 173-181.
[13] Huang Wei,Zhao Jiangyuan,Yan Lu. Empirical Research on Topic Drift Index for Trending Network Events[J]. 数据分析与知识发现, 2020, 4(11): 92-101.
[14] Ye Guanghui,Xu Tong,Bi Chongwu,Li Xinyue. Analyzing Evolution of City Tourism Portraits with Multi-Dimensional Features and LDA Model[J]. 数据分析与知识发现, 2020, 4(11): 121-130.
[15] Wang Xiwei,Zhang Liu,Huang Bo,Wei Ya’nan. Constructing Topic Graph for Weibo Users Based on LDA: Case Study of “Egypt Air Disaster”[J]. 数据分析与知识发现, 2020, 4(10): 47-57.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938