Please wait a minute...
New Technology of Library and Information Service  2013, Vol. 29 Issue (10): 15-19    DOI: 10.11925/infotech.1003-3513.2013.10.03
Current Issue | Archive | Adv Search |
NCBO-based Ontology Mapping and Application
Wang Liwei, Mu Dongmei, Wang Wei
School of Public Health, Jilin University, Changchun 130021, China
Export: BibTeX | EndNote (RIS)      
Abstract  This paper introduces the research and practice conditions of the Ontology mapping service provided by United States National Center for Biomedical Ontology (NCBO), analyzes the rationale, classification and method of NCBO Ontology mapping, realizes Ontology mapping between MedDRA and ICD with the NCBO project. Then Java parsing for the semi-structure XML results is used to obtain the semantic computatioin-enabling structured data. This case study showes the application value of NCBO-based Ontology mapping. The research can provide the reference method of data transformation and data basics for semantic processing, specifically semantic computation and data mining in semantic interoperatability, and can provide beneficial reference for Ontology fusion and semantic interconnection research in other fields.
Key wordsOntology mapping      REST      XML parse      Data conversion     
Received: 14 June 2013      Published: 04 November 2013
:  TP182  

Cite this article:

Wang Liwei, Mu Dongmei, Wang Wei. NCBO-based Ontology Mapping and Application. New Technology of Library and Information Service, 2013, 29(10): 15-19.

URL:     OR

[1] AI3. An Intrepid Guide to Ontologies [EB/OL]. [2013-05-26].
[2] BioPortal Mappings Service [EB/OL]. [2013-05-27].
[3] Noy N F, Griffith N, Musen M A. Collecting Community-based Mappings in an Ontology Repository [C]. In: Proceedings of the 7th International Semantic Web Conference(ISWC'08). Springer, 2008:371-386.
[4] Jonquet C, LePendu P, Falconer S, et al. NCBO Resource Index: Ontology-based Search and Mining of Biomedical Resources [J]. Journal of Web Semantics, 2011,9(3):316-324.
[5] Fielding R T. Architectural Styles and the Design of Network-based Software Architectures[D]. Irvine: University of California, 2000.
[6] 陈小毛, 汤文兵. Java 解析 XML 的方法比较研究[J]. 中国新技术新产品, 2009(15):25. (Chen Xiaomao, Tang Wenbing. Comparative Research on Methods of XML Parsing with Java [J]. China New Technologies and Products, 2009(15):25.)
[7] U.S. Food and Drug Administration. FDA Adverse Event Reporting System (FAERS) (Formerly AERS) [EB/OL].[2013-07-15].
[8] Rawlins M D. Spontaneous Reporting of Adverse Drug Reactions. I: The Data[J]. British Journal of Clinical Pharmacology, 1988,26(1): 1-5.
[9] ADEpedia. A Scalable and Standardized Knowledge Base of Adverse Drug Events [EB/OL]. [2013-07-07].
[10] Wei W Q, Cronin R M, Xu H, et al. Development and Evaluation of an Ensemble Resource Linking Medications to Their Indications[J]. Journal of the American Medical Informatics Association, 2013, 20(5):954-961.
[1] Liu Yuanchen, Wang Hao, Gao Yaqi. Predicting Online Music Playbacks and Influencing Factors[J]. 数据分析与知识发现, 2021, 5(8): 100-112.
[2] Ding Hao, Ai Wenhua, Hu Guangwei, Li Shuqing, Suo Wei. A Personalized Recommendation Model with Time Series Fluctuation of User Interest[J]. 数据分析与知识发现, 2021, 5(11): 45-58.
[3] Sheng Shu, Huang Qi, Yang Yang, Xie Qiwen, Qin Xinguo. Exchanging Chinese Medical Information Based on HL7 FHIR[J]. 数据分析与知识发现, 2021, 5(11): 13-28.
[4] Xi Yunjiang, Du Diedie, Liao Xiao, Zhang Xuehong. Analyzing & Clustering Enterprise Microblog Users with Supernetwork[J]. 数据分析与知识发现, 2020, 4(8): 107-118.
[5] Ma Jianxia,Yuan Hui,Jiang Xiang. Extracting Name Entities from Ecological Restoration Literature with Bi-LSTM+CRF[J]. 数据分析与知识发现, 2020, 4(2/3): 78-88.
[6] Chen Xianlai, Luo Xiao, Liu Li, Li Zhongmin, An Ying. k-Anonymity Algorithm of Multi-Branch-Tree Forest Based on Recognition Rate[J]. 数据分析与知识发现, 2020, 4(12): 14-25.
[7] Bengong Yu,Yumeng Cao,Yangnan Chen,Ying Yang. Classification of Short Texts Based on nLD-SVM-RF Model[J]. 数据分析与知识发现, 2020, 4(1): 111-120.
[8] Yan Wen,Lijian Ma,Qingtian Zeng,Wenyan Guo. POI Recommendation Based on Geographic and Social Relationship Preferences[J]. 数据分析与知识发现, 2019, 3(8): 30-39.
[9] Huiying Qi,Yuhe Jiang. Predicting Breast Cancer Survival Length with Multi-Omics Data Fusion[J]. 数据分析与知识发现, 2019, 3(8): 88-93.
[10] Lixin Xia,Jieyan Zeng,Chongwu Bi,Guanghui Ye. Identifying Hierarchy Evolution of User Interests with LDA Topic Model[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[11] Wancheng Chen,Haoran Dai,Yinghan Jin. Appraising Home Prices with HEDONIC Model: Case Study of Seattle, U.S.[J]. 数据分析与知识发现, 2019, 3(5): 19-26.
[12] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[13] Yuan Gao,Dong Wang,Hongwei Feng,Yuanlei Shi,Zhizhou Duan. Identifying Urban Intersections with GPS Trajectories[J]. 数据分析与知识发现, 2019, 3(11): 24-34.
[14] Hao Ding,Shuqing Li. Personalized Recommendation Based on Predictive Analysis of User’s Interests[J]. 数据分析与知识发现, 2019, 3(11): 43-51.
[15] Zhou Cheng,Wei Hongqin. Identifying Crowd Participants with Modified Random Forests Algorithm[J]. 数据分析与知识发现, 2018, 2(7): 46-54.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938