Please wait a minute...
New Technology of Library and Information Service  2013, Vol. Issue (12): 88-93    DOI: 10.11925/infotech.1003-3513.2013.12.14
Current Issue | Archive | Adv Search |
A Research on Selecting Partners of Knowledge Collaboration in Virtual Community Based on Tag
Deng Weihua1, Yi Ming2
1. College of Public Administration, Huazhong Agricultural University, Wuhan 430070, China;
2. School of Information Management, Central China Normal University, Wuhan 430079, China
Export: BibTeX | EndNote (RIS)      
Abstract  This paper explores a new method of selecting partner of knowledge collaboration in virtual community based on Tag. It differentiates virtual community domain by tag clustering firstly, then projects and constructs new relational diagram of users and strengthens simply user knowledge relation based on the two branch of graph theory, and applies the network analysis method to determine the candidate partners set and to finish the candidate partner evaluation and selection. The experiment validates the conclusion of this paper.
Key wordsKnowledge collaboration      Selecting partners      Virtual community      Tag     
Received: 05 August 2013      Published: 08 January 2014
:  TP393  

Cite this article:

Deng Weihua, Yi Ming. A Research on Selecting Partners of Knowledge Collaboration in Virtual Community Based on Tag. New Technology of Library and Information Service, 2013, (12): 88-93.

URL:     OR

[1] 成全. 基于协同标注的科研社区知识融合机制研究[J]. 情报理论与实践, 2011, 34(8):20-25.(Cheng Quan. Study on a Implementation Mechanism for Knowledge Integration in the Research-oriented Community Based on Collaborative Annotation[J]. Information Studies: Theory & Application, 2011, 34(8):20-25.)
[2] Calvo B, Savi F. A Real-world Application of Monte Carlo Procedure for Debris Flow Risk Assessment[J]. Computers & Geosciences, 2009, 35(5):967-977.
[3] Van Groenendaal W J H, Kleijnen J P C. On the Assessment of Economic Risk: Factorial Design Versus Monte Carlo Methods[J].Reliability Engineering & System Safety, 1997, 57(1):91-102.
[4] Khashman A. Neural Networks for Credit Risk Evaluation: Investigation of Different Neural Models and Learning Scheme[J].Expert Systems with Applications, 2010, 37(9):6233-6239.
[5] 邓卫华, 易明, 王伟军. 虚拟社区中基于Tag的知识协同机制——基于豆瓣社区的案例研究[J]. 管理学报, 2012, 9(8):1203-1210.(Deng Weihua, Yi Ming, Wang Weijun. A Research on Knowledge Collaboration Mechanisms in Virtual Community Based on Tag: A Case Study on Douban[J]. Chinese Journal of Management, 2012, 9(8):1203-1210.)
[6] 樊治平, 冯博, 俞竹超.知识协同的发展及研究展望[J]. 科学学与科学技术管理, 2007, 28(11):85-91. (Fan Zhiping, Feng Bo, Yu Zhuchao. The Developing and Research Prospects for Knowledge Collaboration[J]. Science of Science and Management of S & T, 2007, 28(11):85-91.)
[7] Xu Y, Zhang L. Personalized Information Service Based on Social Bookmarking[C]. In: Proceedings of the 8th International Conference on Asian Digital Libraries: Implementing Strategies and Sharing Experiences (ICADL'05). Berlin, Heidelberg: Springer-Verlag, 2005:475-476.
[8] Nakamoto R, Nakajima S, Miyazaki J, et al. Tag-based Contextual Collaborative Filtering[J].IAENG International Journal of Computer Science, 2007, 34(2):214-219.
[9] Shiratsuchi K, Yoshii S, Furukawa M. Finding Unknown Interests Utilizing the Wisdom of Crowds in a Social Bookmark Service[C]. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IATW '06). Washington, D C: IEEE Computer Society, 2006:421-424.
[10] Schmitz C, Hotho A, Jaschke R, et al. Mining Association Rules in Folksonomies[C]. In: Proceedings of the IFCS2006 Conference. Berlin, Heidelberg: Springer-Verlag, 2006: 261-270.
[11] Beckmann M J. On Knowledge Networks in Science: Collaboration Among Equals[J]. The Annals of Regional Science, 1994, 28 (3): 233-242.
[12] 成全, 焦玉英.基于科研社区的协同知识生产行为研究[J]. 情报理论与实践, 2010, 33(11):44-49.(Cheng Quan, Jiao Yuying. Research on the Collaborative Knowledge Production Behavior Based on Scientific Research Community[J]. Information Studies: Theory & Application, 2010, 33(11):44-49.)
[13] 易明, 曹高辉, 毛进, 等. 基于Tag的知识主题网络构建与Web知识推送研究[J]. 中国图书馆学报, 2011, 37(4):4-12.(Yi Ming, Cao Gaohui, Mao Jin, et al. Knowledge Topic Network Construction and Web Knowledge Push Based on Tag[J]. Journal of Library Science in China, 2011, 37(4):4-12.)
[14] Bielenberg K, Zacher M. Groups in Social Software: Utilizing Tagging to Integrate Individual Contexts for Social Navigation[D]. Bremen: Universitt Bremen, 2005.
[15] Matts D J, Strogat Z S H. Collective Dynamics of 'Small-world' Networks[J].Nature, 1998, 393:440-442.
[16] Chang H, Su B B, Zhou Y P, et al. Assortativity and Act Degree Distribution of Some Collaboration Networks[J].Physica A: Statistical Mechanics and Its Applications, 2007, 383(2):687-702.
[17] Yook S H, Jeong H, Barabasi A-L, et al. Wighted Evolving Networks[J]. Physical Review Letters, 2001, 86(25):5835-5838.
[18] Zhou T, Ren J, Medo M, et al. Bipartite Network Projection and Personal Recommendation[J].Physical Review E, 2007, 76 (4):046115.
[19] 罗家德. 社会网分析讲义[M].北京:社会科学文献出版社, 2005.(Luo Jiade. Social Network Analysis[M].Bei jing: Social Sciences Academic Press, 2005.)
[20] 易明, 毛进, 邓卫华.基于社会化标签网络的细粒度用户兴趣建模[J]. 现代图书情报技术, 2011(4):35-41.(Yi Ming, Mao Jin, Deng Weihua. Fine-grained User Preference Modeling Based on Tag Networks[J]. New Technology of Library and Information Service, 2011(4):35-41.)
[21] 刘军.整体网分析讲义:UCINET软件实用指南[M].上海:上海人民出版社, 2009.(Liu Jun. Lectures on Whole Network Approach:A Practical Guide to UCINET[M].Shanghai:Shanghai People's Publishing House, 2009.)
[1] Wang Yifan,Li Bo,Shi Hua,Miao Wei,Jiang Bin. Annotation Method for Extracting Entity Relationship from Ancient Chinese Works[J]. 数据分析与知识发现, 2021, 5(9): 63-74.
[2] Zhang Qi,Jiang Chuan,Ji Youshu,Feng Minxuan,Li Bin,Xu Chao,Liu Liu. Unified Model for Word Segmentation and POS Tagging of Multi-Domain Pre-Qin Literature[J]. 数据分析与知识发现, 2021, 5(3): 2-11.
[3] Wang Yan, Wang Huyan, Yu Bengong. Chinese Text Classification with Feature Fusion[J]. 数据分析与知识发现, 2021, 5(10): 1-14.
[4] Wang Yuan, Shi Kaize, Niu Zhendong. Position-Aware Stepwise Tagging Method for Triples Extraction of Entity-Relationship[J]. 数据分析与知识发现, 2021, 5(10): 71-80.
[5] Zhao Yuxiang,Lian Jingwen. Review of Cultural Heritage Crowdsourcing in the Domain of Digital Humanities[J]. 数据分析与知识发现, 2021, 5(1): 36-55.
[6] Ye Jiaxin,Xiong Huixiang,Tong Zhaoli,Meng Qiuqing. Collaborative Tagging for Doctors in Online Medical Community[J]. 数据分析与知识发现, 2020, 4(6): 118-128.
[7] Xiong Huixiang,Li Xiaomin,Li Yueyan. Group Recommendation Based on Attribute Mining of Book Reviews[J]. 数据分析与知识发现, 2020, 4(2/3): 214-222.
[8] Liu Liu,Qin Tianyun,Wang Dongbo. Automatic Extraction of Traditional Music Terms of Intangible Cultural Heritage[J]. 数据分析与知识发现, 2020, 4(12): 68-75.
[9] Bocheng Li,Yunqiu Zhang,Kaixi Yang. Extracting Emotion Tags from Comments of Microblog Commodities[J]. 数据分析与知识发现, 2019, 3(9): 115-123.
[10] Lixin Xia,Jieyan Zeng,Chongwu Bi,Guanghui Ye. Identifying Hierarchy Evolution of User Interests with LDA Topic Model[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[11] Yue Yuan,Dongbo Wang,Shuiqing Huang,Bin Li. The Comparative Study of Different Tagging Sets on Entity Extraction of Classical Books[J]. 数据分析与知识发现, 2019, 3(3): 57-65.
[12] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[13] Chongwu Bi,Guanghui Ye,Mingqian Li,Jieyan Zeng. Discovering City Profile Based on Tag Semantic Mining[J]. 数据分析与知识发现, 2019, 3(12): 41-51.
[14] Wuxuan Jiang,Huixiang Xiong,Jiaxin Ye,Ning An. Creating Dynamic Tags for Social Networking Groups[J]. 数据分析与知识发现, 2019, 3(10): 98-109.
[15] Ye Guanghui,Hu Jinglan,Xu Jian,Xia Lixin. Analyzing Growth Trends and Attachment Mode of Social Blog Tags[J]. 数据分析与知识发现, 2018, 2(6): 70-78.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938