Please wait a minute...
New Technology of Library and Information Service  2014, Vol. 30 Issue (2): 79-85    DOI: 10.11925/infotech.1003-3513.2014.02.11
Current Issue | Archive | Adv Search |
The Evaluation Model Research on Information Dissemination Influence of Micro-blog Individual
Lin Chen1,2
1. Department of Military Information Management, Shanghai Branch of Nanjing Institute of Politics, Shanghai 200433, China;
2. Post-doctoral Mobile Stations, Shanghai Branch of Nanjing Institute of Politics, Shanghai 200433, China
Export: BibTeX | EndNote (RIS)      
Abstract  [Objective] Forwarding number is usually as the one and only criterion in Micro-blog individual evaluation of information dissemination influence. When individual increases forwarding number using ‘buying fans’, evaluation result can't reflect its true influence. [Methods] From the perspective of dissemination results, this paper redefines propagation depth, speed and gives quantitative methods, combined with the forwarding number (propagation breadth) together as evaluation dimensions, constructs evaluation model based on dimensions. [Results] Experimental results show that compared forwarding number, the new model can truly reflect the individual information dissemination influence, in particular, can distinguish the difference between individuals with the same forwarding number. [Limitations] Experimental data is obtained by using Weibo API, but how much data returned is limited. To get the full dissemination of data, the experiment selects individuals that forwarding number of its information is lower than 2 000. But the model is not affected by data size, while data integrity should be ensured for using. [Conclusions] This paper provides a new, more accurate information dissemination influence evaluation model with strong theoretical and practical value.
Key wordsMicro-blog      Dissemination influence      Dissemination result      Evaluation model     
Received: 22 October 2013      Published: 06 March 2014
:  TP391  

Cite this article:

Lin Chen. The Evaluation Model Research on Information Dissemination Influence of Micro-blog Individual. New Technology of Library and Information Service, 2014, 30(2): 79-85.

URL:     OR

[1] 谢耕耘, 荣婷. 微博传播的关键节点及其影响因素分析——基于30起重大舆情事件微博热帖的实证研究[J]. 新闻传播与研究, 2013(3): 5-15. (Xie Gengyun, Rong Ting. Micro-Blog Key Node Spread and Its Influencing Factors ——Empirical Research Based on Hot Micro-Blog Posts of 30 Major Public Opinion Events[J]. Journalism & Comm-unication, 2013(3): 5-15.)
[2] Cha M, Haddadi H, Gummadi K P, et al. Measuring User Influence in Twitter: The Million Follower Fallacy[C]. In: Proceedings of the 4th International AAAI Conference on Weblogs and Social Media. 2010: 10-17.
[3] Ye S Z, Wu S F. Measuring Message Propagation and Social Influence on Twitter. com[C]. In: Proceedings of the 2nd International Conference on Social Informatics. 2010: 216-231.
[4] 马俊, 周刚, 许斌, 等. 基于个人属性特征的微博用户影响力分析[J]. 计算机应用研究, 2013, 30(8): 2483-2487. (Ma Jun, Zhou Gang, Xu Bin, et al. Analysis of User Influence in Microblog Based on Individual Attribute Features[J]. Application Research of Computers, 2013, 30(8): 2483-2487.)
[5] 苑卫国, 刘云, 程军军, 等. 微博双向"关注"网络节点中心性及传播影响力的分析[J]. 物理学报, 2013, 62(3): 038901. DOI: 10. 7498/aps. 62. 038901. (Yuan Weiguo, Liu Yun, Cheng Junjun, et al. Empirical Analysis of Microblog Centrality and Spread Influence Based on Bi-Directional Connection[J]. Acta Physica Sinica, 2013, 62(3): 038901. DOI: 10. 7498/aps. 62. 038901.)
[6] Tunkelang D. A Twitter Analog to PageRank[R/OL].[2009-01-13].
[7] Weng J S, Lim E P, Jiang J, et al. TwitterRank: Finding Topic-sensitive Influential Twitterers[C]. In: Proceedings of the 3rd ACM International Conference on Web Search and Data Ming. New York: ACM, 2010: 261-270.
[8] Dace K, Bhatt R, Varma V. Identifying Influencers in Social Networks[C]. In: Proceedings of the 5th International Conference on Weblogs and Social Media. Palo Alto, CA: AAAI Press, 2011: 1-9.
[9] 袁毅. 微博客信息传播结构、路径及其影响因素分析[J]. 图书情报工作, 2011, 55(12): 26-30. (Yuan Yi. The Analysis of Structure, Path and Impact Factor of Microblog Information Communication[J]. Library and Information Service, 2011, 55(12): 26-30.)
[10] The Open Graph Viz Platform[OL].[2013-09-30].
[1] Mingqing Zhao,Shengqiang Wu. Research on Stock Market Weighted Prediction Method Based on Micro-blog Sentiment Analysis[J]. 数据分析与知识发现, 2019, 3(2): 43-51.
[2] Zeng Ziming,Yang Qianwen. Sentiment Analysis for Micro-blogs with LDA and AdaBoost[J]. 数据分析与知识发现, 2018, 2(8): 51-59.
[3] Gao Yongbing,Yang Guipeng,Zhang Di,Ma Zhanfei. Detecting Events from Official Weibo Profiles Based on Post Clustering with Burst Words[J]. 数据分析与知识发现, 2017, 1(9): 57-64.
[4] He Yue,Zhu Can. Sentiment Analysis of Weibo Opinion Leaders——Case Study of “Illegal Vaccine” Event[J]. 数据分析与知识发现, 2017, 1(9): 65-73.
[5] Ding Shengchun,Gong Silan,Li Hongmei. A New Method to Detect Bursty Events from Micro-blog Posts Based on Bursty Topic Words and Agglomerative Hierarchical Clustering Algorithm[J]. 现代图书情报技术, 2016, 32(7-8): 12-20.
[6] Yang Aidong,Liu Dongsu. Hadoop Based Public Opinion Monitoring System for Micro-blogs[J]. 现代图书情报技术, 2016, 32(5): 56-63.
[7] Sun He,Li Shuqin,Lv Xueqiang,Liu Kehui. Retrieving Geographic Information for Micro-blog’s City Complaints[J]. 现代图书情报技术, 2016, 32(3): 58-66.
[8] Li Jinhua,An Zhongjie. Analyzing Geographical Coordinates Data for Micro-blog Trending Events[J]. 现代图书情报技术, 2016, 32(2): 90-101.
[9] Lan Yuexin, Dong Xilin, Su Guoqiang, Qu Zhikai. Research on Micro-blog Public Opinion Information Interaction Model Under the Background of Big Data[J]. 现代图书情报技术, 2015, 31(5): 24-33.
[10] Yang Ning, Huang Feihu, Wen Yi, Chen Yunwei. An Opinion Evolution Model Based on the Behavior of Micro-blog Users[J]. 现代图书情报技术, 2015, 31(12): 34-41.
[11] Shi Weijie, Xu Yabin. Research on Discovering Micro-blog User Interests[J]. 现代图书情报技术, 2015, 31(1): 52-58.
[12] Tang Xiaobo, Fang Xiaoke. The Effect of the Quality of Textual Features on Retrieval in Micro-blog[J]. 现代图书情报技术, 2014, 30(6): 79-86.
[13] He Jing, Guo Jinli, Xu Xuejuan. Analysis on Statistical Characteristic and Dynamics for User Behavior in Microblog Communities[J]. 现代图书情报技术, 2013, 29(7/8): 94-100.
[14] Xiong Tao, He Yue. The Identification and Analysis of Micro-blogging Opinion Leaders in the Network of Retweet Relationship[J]. 现代图书情报技术, 2013, (6): 55-62.
[15] Wang Lin, Zhao Yang, Shi Kan. Perception of Implementation Intention Law on Micro-blog Public Opinion: A Comparative Experimental Study[J]. 现代图书情报技术, 2013, (5): 73-79.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938