Please wait a minute...
New Technology of Library and Information Service  2014, Vol. 30 Issue (7): 64-70    DOI: 10.11925/infotech.1003-3513.2014.07.09
Current Issue | Archive | Adv Search |
Research on Semantic Distance Measurement and Visualization of Tags in Folksonomy
Huang Wei, Gao Junfeng, Li Rui, Zhou Shanshan
School of Management, Jilin University, Changchun 130022, China
Export: BibTeX | EndNote (RIS)      

[Objective] The thesis explores the visualization and the measurement method of the tags semantic distance in folk sonomy, and lays foundations for optimizing the navigation algorithm of related tags.[Context] The thesis weakens the "topic drift" in the navigation of related tags and improves the knowledge service performances in folk sonomy websites such as Bib Sonomy by the visualization of the semantic distance.[Methods] The thesis designs an algorithm which helps choose the tested tags sets and measure the semantic distance, and visualizing the final results by a map with threshold value, based on the data in Bib Sonomy.[Results] There exist close semantic tags and distants emantic tags in test set, which affects the topic drift level in the behavior of the related tags navigation.[Conclusions]Semantic visualization method help users to distinguish semantic attributes between the related tags sets, and improve the navigation performances of the tags.

Key wordsFolksonomy      Semantic measurement      Related tags      Social network analysis      Semantic visualization     
Received: 03 March 2014      Published: 20 October 2014
:  G250  

Cite this article:

Huang Wei, Gao Junfeng, Li Rui, Zhou Shanshan. Research on Semantic Distance Measurement and Visualization of Tags in Folksonomy. New Technology of Library and Information Service, 2014, 30(7): 64-70.

URL:     OR

[1] Li P, Wang B, Jin W, et al. User-Related Tag Expansion for Web Document Clustering[C]. In: Proceedings of the 33rd European Conference on Advances in Information Retrieval. 2011: 19-31.
[2] 斯坦利. 沃瑟曼, 凯瑟琳. 福特斯. 社会网络分析: 方法与应用[M]. 陈禹, 孙彩虹译. 北京: 中国人民大学出版社, 2011: 188-195. (Wasserman S, Faust K. Social Network Analysis: Methods and Applications[M]. Translated by Chen Yu, Sun Caihong. Beijing: China Renmin University Press Co., LTD, 2011: 188-195.)
[3] Tsui E, Wang W M, Cheung C F, et al. A Concept-relationship Acquisition and Inference Approach for Hierarchical Taxonomy Construction from Tags[J]. Information Processing & Management, 2010, 46 (1): 44-57.
[4] Laniado D, Eynard D, Colombetti M. Using WordNet to Turn a Folksonomy into a Hierarchy of Concepts[C]. In: Proceedings of Semantic Web Application and Perspectives- 4th Italian Semantic Web Workshop. 2007: 192-201.
[5] 滕广青, 毕强, 高娅. 基于概念格的 Folksonomy 知识组织研究——关联标签的结构特征分析[J]. 现代图书情报技术, 2012(6): 22-28. (Teng Guangqing, Bi Qiang, Gao Ya.A Study on Knowledge Organization of Folksonomy Based on Concept Lattice: Analysis on Structural Characteristics of Related Tags[J] .New Technology of Library and Information Service, 2012(6): 22-28.)
[6] Schenkel R, Crecelius T, Kacimi M, et al. Efficient Top-k Querying over Social Tagging Networks[C]. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2008: 523-530.
[7] 张云中, 杨萌, 徐宝祥. 基于 FCA 的 Folksonomy 用户偏好挖掘研究[J]. 现代图书情报技术, 2011(6): 72-77. (Zhang Yunzhong, Yang Meng, Xu Baoxiang.Research on FCA-based User Profile Mining for Folksonomy[J]. New
Technology of Library and Information Service, 2011(6): 72-77.)

[1] Gao Yilin,Min Chao. Comparing Technology Diffusion Structure of China and the U.S. to Countries Along the Belt and Road[J]. 数据分析与知识发现, 2021, 5(6): 80-92.
[2] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[3] Peng Guan,Yuefen Wang. Advances in Patent Network[J]. 数据分析与知识发现, 2020, 4(1): 26-39.
[4] Chen Fen,Fu Xi,He Yuan,Xue Chunxiang. Identifying Weibo Opinion Leaders with Social Network Analysis and Influence Diffusion Model[J]. 数据分析与知识发现, 2018, 2(12): 60-67.
[5] Wang Zhongyi,Zhang Heming,Huang Jing,Li Chunya. Studying Knowledge Dissemination of Online Q&A Community with Social Network Analysis[J]. 数据分析与知识发现, 2018, 2(11): 80-94.
[6] Li Fei,Zhang Jian,Wang Zongshui. Review of Social Recommendation with Bibliometrics and Social Network Analysis[J]. 数据分析与知识发现, 2017, 1(6): 22-35.
[7] Wang Xiwei,Zhang Liu,Li Shimeng,Wang Nan’axue. The Dissemination of Online Public Opinion on Social Welfare Issues via New Media: Case Study of “Draw up the Lifeline” in Sina Weibo[J]. 数据分析与知识发现, 2017, 1(6): 93-101.
[8] Fan Ruxia,Zeng Jianxun,Gao Yaruixi. Recognizing Dynamic Academic Impacts of Scholars Based on Cooperative Network[J]. 数据分析与知识发现, 2017, 1(4): 30-37.
[9] Wang Yuefen,Jin Jialin. Characteristics and Development Trends of Papers from “New Technology of Library and Information Service”[J]. 现代图书情报技术, 2016, 32(9): 1-16.
[10] Wu Huijuan,Jia Tina Du,Sun Hongfei,Jannatul Fardous. Identifying Core Users in Social Resource Recommendation System with K-shell Collapse Sequences[J]. 现代图书情报技术, 2016, 32(9): 58-64.
[11] Wu Yingliang, Yao Huaidong, Li Cheng'an. An Improved Collaborative Filtering Recommendation Algorithm with Indirect Trust Relationship[J]. 现代图书情报技术, 2015, 31(9): 38-45.
[12] Ren Ni, Zhou Jiannong. The Discovery and Evaluation of Research Team Under the Mode of Weighted Co-Author Network[J]. 现代图书情报技术, 2015, 31(9): 68-75.
[13] Tan Min, Xu Xin. The Empirical Study of h-Degree in Recommendation Network of Academic Blogs——Taking Blogs as an Example[J]. 现代图书情报技术, 2015, 31(7-8): 31-36.
[14] Yang Ruyi, Liu Dongsu. A Research on Visualization Algorithm of Hierarchy Information Based on Folksonomy[J]. 现代图书情报技术, 2014, 30(7): 71-76.
[15] Bi Qiang, Zhou Shanshan, Ma Zhiqiang, Teng Guangqing. Study on Optimization Mechanism of Tag Cloud for Knowledge Relation[J]. 现代图书情报技术, 2014, 30(5): 33-40.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938