Please wait a minute...
New Technology of Library and Information Service  2014, Vol. 30 Issue (7): 71-76    DOI: 10.11925/infotech.1003-3513.2014.07.10
Current Issue | Archive | Adv Search |
A Research on Visualization Algorithm of Hierarchy Information Based on Folksonomy
Yang Ruyi, Liu Dongsu
School of Economics and Management, Xidian University, Xi'an 710126, China
Export: BibTeX | EndNote (RIS)      

[Objective] Hierarchy visualization is an intuitional way to analyze semantic relations between Folksonomies by enhancing users' cognition.[Context] Folksonomy reflects the meaning of Web resources well from the perspective of the common users. Hierarchy information visualization technology, as a precise tool of representing abstract information, is widely used to assist users to cognize and analyze hierarchy data set.[Methods] Firstly, afive-tuple method is improved to describe the semantics of Folksonomy. Secondly, the paper uses an existing classification to make the Folksonomies have hierarchy relations. At last, it puts forward an information visualizational gorithm to display the Folksonomy set based on hierarchy structure.[Results] Experiments show that it reveals represents hierarchy relations of Folksonomies clearly and intuitively, improving the layout effectively. Other semantic relationships are stored in Folksonomy node for less influence on users' cognition.[Conclusions] It is proved to be an effective and simple way to visualize hierarchy information from the perspective of optimizing the overall layout and enhance the ability of user cognition.

Key wordsFolksonomy      Hierarchy information      Information visualization     
Received: 18 March 2014      Published: 20 October 2014
:  G353.1  

Cite this article:

Yang Ruyi, Liu Dongsu. A Research on Visualization Algorithm of Hierarchy Information Based on Folksonomy. New Technology of Library and Information Service, 2014, 30(7): 71-76.

URL:     OR

[1] 黄国彬. 大众标注研究进展[J]. 图书情报工作, 2008, 52(1): 13-15, 55. (Huang Guobin. Review of Study on Folksonomy at Home and Abroad[J]. Library and Information Service, 2008, 52(1): 13-15, 55.)
[2] 肖卫东, 孙扬, 赵翔, 等. 层次信息可视化技术研究综述[J]. 小型微型计算机系统, 2011, 32(1): 137-146. (Xiao Weidong, Sun Yang, Zhao Xiang, et al. Survey on the Research of Hierarchy Information Visualization[J]. Journal of Chinese Computer Systems, 2011, 32(1): 137-146.)
[3] Foley J. Getting There: the Ten Top Problems Left[J]. IEEE Computer Graphics and Applications, 2000, 20(1): 66-68.
[4] Reingold E M, Tilford J S.Tidier Drawing of Trees[J]. IEEE Transactions on Software Engineering, 1981, 7(2): 223-228.
[5] Sacco O, Bothorel C. Exploiting Semantic Web Techniques for Representing and Utilising Folksonomies[C]. In: Proceedings of the International Workshop on Modeling Social Media (MSM’10). New York: ACM, 2010.
[6] Battista G D, Eades P, Tamassia R, et al. Graph Drawing: Algorithms for the Visualization of Graphs[M]. Prentice Hall, 1998.
[7] Lamping J, Rao R, Pirolli P. A Focus + Context Technique Based on Hyperbolic Geometry for Visualizing Large Hierarchies[C]. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’95). New York: ACM Press/Addison-Wesley Publishing Co., 1995: 401-408.
[8] Shneiderman B. Tree Visualization with Tree-maps: 2-d Space-filling Approach[J]. ACM Transactions on Graphics (TOG), 1992, 11(1): 92-99.
[9] Cattuto C, Benz D, Hotho A, et al. Semantic Grounding of Tag Relatedness in Social Bookmarking Systems[C]. In: Proceedings of the 7th International Conference on Semantic Web (ISWC’08). Berlin, Heidelberg: Springer-Verlag, 2008: 615-631.
[10] Sanderson M, Croft B. Deriving Concept Hierarchies from Text[C]. In: Proceedings of the 22nd ACM Conference of the Special Interest Group in Information Retrieval (SIGIR’99). New York: ACM, 1999: 206-213.
[11] 李明亮. 基于大众注释的语义提取研究及应用[D].南京: 东南大学, 2008. (Li Mingliang. A Research and Application of Semantic Extraction Based on Social Tagging[D]. Nanjing: Southeast University, 2008.)
[12] Wu L H, Hsu P Y. An Interactive and Flexible Information Visualization Method[J]. Information Sciences, 2013, 221: 306-315.
[13] Tomuro N, Shepitsen A. Construction of Disambiguated Folksonomy Ontologies Using Wikipedia[C]. In: Proceedings of the 2009 Workshop on the People’s Web Meets NLP: Collaboratively Constructed Semantic Resources. Stroudsburg: Association for Computational Linguistics, 2009: 42-50.

[1] Xie Xiufang,Zhang Xiaolin. Integrated Analysis and Visualization of Sci-Tech Roadmaps: Case Study of Renewable Energy[J]. 数据分析与知识发现, 2017, 1(1): 16-25.
[2] Zeng Xinhong, Cai Qinghe, Huang Huajun, Lin Weiming. Research on Non-uniform Node Clustered Graph Layout Algorithm for Visualization Based on Force Directed Model[J]. 现代图书情报技术, 2014, 30(9): 33-43.
[3] Huang Wei, Gao Junfeng, Li Rui, Zhou Shanshan. Research on Semantic Distance Measurement and Visualization of Tags in Folksonomy[J]. 现代图书情报技术, 2014, 30(7): 64-70.
[4] Bi Qiang, Zhou Shanshan, Ma Zhiqiang, Teng Guangqing. Study on Optimization Mechanism of Tag Cloud for Knowledge Relation[J]. 现代图书情报技术, 2014, 30(5): 33-40.
[5] Luo Lin, Liang Guisheng, Cai Jun. Book Recommendation System Based on Folksonomy in Library[J]. 现代图书情报技术, 2014, 30(4): 14-19.
[6] Xia Lixin, Cai Xin, Shi Yijin, Sun Danxia, Wang Zhongyi. Organization and Visualization of Web Life Service Information Research[J]. 现代图书情报技术, 2014, 30(4): 85-91.
[7] Qian Li, Zhang Xiaolin, Li Chunwang, Wang Xiaomei, Yang Liying, Chen Ting, Zhang Zhixiong. Research and Application of Science Intelligence Analysis Integrated Services Architecture Using OSGi[J]. 现代图书情报技术, 2014, 30(12): 62-70.
[8] Yu Bengong, Gu Jiawei. Information Organization and Representation Based on Folksonomy and RDF[J]. 现代图书情报技术, 2014, 30(11): 24-30.
[9] Qiu Junping, Yu Houqiang. The Research Development of Visual Analytics from the Perspective of VAST Conference[J]. 现代图书情报技术, 2014, 30(10): 14-24.
[10] Bi Qiang, Wang Yu. Fronts and Hotspots of the Application Research on Folksonomy Abroad[J]. 现代图书情报技术, 2013, 29(7/8): 36-42.
[11] Zhang Yunliang, Zhang Zhaofeng, Zhang Xiaodan, Xu Deshan. Web Dynamic Interactive Visualization of Knowledge Organization Systems with D3.js[J]. 现代图书情报技术, 2013, 29(7/8): 127-131.
[12] Teng Guangqing, Bi Datian, Ren Jing, Chen Xiaomei. Study on Semantic Closeness of User Tags in Folksonomy[J]. 现代图书情报技术, 2013, (12): 48-54.
[13] Zhang Yunzhong. Using Formal Concept Analysis to Construct the Model of User Behavior Knowledge Discovery in Folksonomy[J]. 现代图书情报技术, 2012, 28(7): 66-75.
[14] Teng Guangqing, Bi Qiang, Gao Ya. A Study on Knowledge Organization of Folksonomy Based on Concept Lattice: Analysis on Structural Characteristics of Related Tags[J]. 现代图书情报技术, 2012, 28(6): 22-28.
[15] Qian Li, Zhang Zhixiong, Zou Yimin, Huang Yongwen. Application of Information Visualization Retrieval in Digital Library[J]. 现代图书情报技术, 2012, 28(4): 74-78.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938