Please wait a minute...
New Technology of Library and Information Service  2014, Vol. 30 Issue (10): 56-62    DOI: 10.11925/infotech.1003-3513.2014.10.09
Current Issue | Archive | Adv Search |
Research on Interactive Recommender System Based on Commodity Domain Knowledge
Hu Xinming, Luo Jianjun, Xia Huosong
School of Management, Wuhan Textile University, Wuhan 430200, China
Export: BibTeX | EndNote (RIS)      

[Objective] This paper researches the flow and framework of commodity information recommender system in the absence of consumers behavior information. [Context] Recommender system is an effective means to reduce information overload. But for the overreliance on consumers behavior information, it may have the cold-start problem, and raise consumer's privacy concerns also. [Methods] With the help of commodity domain knowledge, the interactive recommender system ascertains the consumer's commodity quanticational attribute requirement according to the rough use demand, and then recommends the right product information to the consumer. [Results] A prototype system is designed for experimental study, and the results show high customer satisfactions. [Conclusions] The proposed method can solve the cold-start problem and consumer's privacy concerns to some extent.

Key wordsRecommender system      Cold-start problem      Privacy protection      Commodity domain knowledge     
Received: 11 April 2014      Published: 28 November 2014
:  TP391  

Cite this article:

Hu Xinming, Luo Jianjun, Xia Huosong. Research on Interactive Recommender System Based on Commodity Domain Knowledge. New Technology of Library and Information Service, 2014, 30(10): 56-62.

URL:     OR

[1] Adomavicius G, Tuzhilin A. Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-art and Possible Extensions [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
[2] Chang Y, Shen J, Chen T. A Data Mining-based Method for the Incremental Update of Supporting Personalized Information Filtering [J]. Journal of Information Science and Engineering, 2008, 24(1): 129-142.
[3] 刘建国, 周涛, 汪秉宏. 个性化推荐系统的研究进展[J]. 自然科学进展, 2009, 19(1): 1-15. (Liu Jianguo, Zhou Tao, Wang Binghong. Review on Research of Personalized Recommendation Systems [J]. Progress in Natural Science, 2009, 19(1): 1-15.)
[4] 刘平峰, 聂规划, 陈冬林. 基于知识的电子商务智能推荐系统平台设计[J]. 计算机工程与应用, 2007, 43(19): 199-201. (Liu Pingfeng, Nie Guihua, Chen Donglin. Design of Platform for Knowledge Based Intelligent Electronic Commerce Recommender Systems [J]. Computer Engineering and Applications, 2007, 43(19): 199-201.)
[5] Middleton S E, Shadbolt N, Roure D D. Ontological User Profiling in Recommender Systems[J]. ACM Transactions on Information Systems, 2004, 22(1): 54-88.
[6] 刘鲁, 任晓丽. 推荐系统研究进展及展望 [J]. 信息系统学报, 2008, 2(1): 82-90. (Liu Lu, Ren Xiaoli. Review and Perspective of the Recommender Systems [J]. China Journal of Information Systems, 2009, 2(1): 82-90.)
[7] Swearingen K, Sinha R. Beyond Algorithms: An HCI Perspective on Recommender Systems [C]. In: Proceedings of the ACM SIGIR Workshop on Recommender Systems. 2001.
[8] 吴丽花, 刘鲁. 个性化推荐系统用户建模技术综述[J]. 情报学报, 2006, 25(1): 55-62. (Wu Lihua, Liu Lu. User Profiling for Personalized Recommending Systems-A Review [J]. Journal of the China Society for Scientific and Technical Information, 2006, 25(1): 55-62.)
[9] Honda K, Sugiura N, Ichihashi H, et al. Collaborative Filtering Using Principal Component Analysis and Fuzzy Clustering [C]. In: Proceedings of the 1st Asia-Pacific Conference on Web Intelligence: Research and Development. 2001: 394-402.
[10] 李珊, 何建敏, 厉浩. 基于知识的协同过滤推荐系统研究[J]. 情报学报, 2008, 27(3): 357-362. (Li Shan, He Jianmin, Li Hao. Research of Knowledge Based Collaborative Filtering Recommendation Systems [J]. Journal of the China Society for Scientific and Technical Information, 2008, 27(3): 357-362.)
[11] Felfernig A, Teppan E, Gula B. Knowledge-based Recommender Technologies for Marketing and Sales [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2007, 21(2): 333-354.
[12] Kobsa A. Privacy-enhanced Personalization [J]. Communications of the ACM, 2007, 50(8): 24-33.
[13] Sutanto J, Palme E, Tan C, et al. Addressing the Personalization-Privacy Paradox: An Empirical Assessment from a Field Experiment on Smartphone Users [J]. MIS Quarterly, 2013, 37(4): 1141-1164.
[14] Xu Y, Zhang B, Chen Z, et al. Privacy-enhancing Personalized Web Search [C]. In: Proceedings of the 16th Conference on World Wide Web. 2007: 591-600.
[15] Zhou L, Dai L, Zhang D. Online Shopping Acceptance Model-A Critical Survey of Consumer Factors in Online Shopping [J]. Journal of Electronic Commerce Research, 2007, 8(1): 41-62.
[16] 胡洁, 张进辅. 基于消费者价值观的手段目标链模型[J]. 心理科学进展, 2008, 16(3): 504-512. (Hu Jie, Zhang Jinfu. The Means-End Chain Model Focused on Consumer Values [J]. Advances in Psychological Science, 2008, 16(3): 504-512.)
[17] 颜端武, 刘明岩, 许应楠. 基于领域本体的细粒度用户兴趣建模研究[J]. 情报学报, 2010, 29(3): 433-442. (Yan Duanwu, Liu Mingyan, Xu Yingnan. Toward Fine-grained User Preference Modeling Based on Domain Ontology [J]. Journal of the China Society for Scientific and Technical Information, 2010, 29(3): 433-442.)
[18] 孙东川, 杨立洪, 钟拥军. 管理的数量方法[M]. 北京: 清华大学出版社, 2005: 234-254. (Sun Dongchuan, Yang Lihong, Zhong Yongjun. Quantitative Methods of Management [M]. Beijing: Tsinghua University Press, 2005: 234-254.)
[19] Celik H E, Yilmaz V. Extending the Technology Acceptance Model for Adoption of E-Shopping by Consumers in Turkey [J]. Journal of Electronic Commerce Research, 2011, 12(2): 152-164.

[1] Yu Shuo,Hayat Dino Bedru,Chu Xinbei,Yuan Yuyuan,Wan Liangtian,Xia Feng. Understanding Serendipity in Science: A Survey[J]. 数据分析与知识发现, 2021, 5(1): 16-35.
[2] Wang Shuyi,Liu Sai,Ma Zheng. Microblog Image Privacy Classification with Deep Transfer Learning[J]. 数据分析与知识发现, 2020, 4(10): 80-92.
[3] Fusen Jiao,Shuqing Li. Collaborative Filtering Recommendation Based on Item Quality and User Ratings[J]. 数据分析与知识发现, 2019, 3(8): 62-67.
[4] Liu Dan. Personalized Book Recommender Service Deployment Using Apache Mahout[J]. 现代图书情报技术, 2015, 31(10): 102-108.
[5] Tan Xueqing, He Shan. Research Review on Music Personalized Recommendation System[J]. 现代图书情报技术, 2014, 30(9): 22-32.
[6] Xue Fuliang, Zhang Huiying. A Research of Collaborative Filtering Recommender Method Based on SOM and RBFN Filling Missing Values[J]. 现代图书情报技术, 2014, 30(7): 56-63.
[7] Jiang Shuhao, Xue Fuliang. An Improved Content-based Recommendation Method Through Collaborative Predictions and Fuzzy Similarity Measures[J]. 现代图书情报技术, 2014, 30(2): 41-47.
[8] Zhang Huiying, Xue Fuliang. An Improved Collaborative Filtering Recommendation Algorithm Based on Vague Sets Theory[J]. 现代图书情报技术, 2012, 28(3): 35-39.
[9] Zhang Huiying, Xue Fuliang. An Integrated Recommender Method Based on CLV and Collaborative Filtering[J]. 现代图书情报技术, 2012, 28(1): 46-52.
[10] Li Cong. Review of Scalability Problem in E-commerce Collaborative Filtering[J]. 现代图书情报技术, 2010, 26(11): 37-41.
[11] Wang Hongyu,Zhao Ying,Dang Yuewu. Design of an E-commerce Recommender System Based on Hybrid Algorithm[J]. 现代图书情报技术, 2009, 3(1): 80-85.
[12] Li Shuning. Introduction on Special Public Web Browser in Library[J]. 现代图书情报技术, 2005, 21(3): 20-22.
[13] Ma Wenfeng,Gao Fengrong,Wang Shan. On State Personal Information Service Recommender System in Digital Library[J]. 现代图书情报技术, 2003, 19(2): 16-18.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938