Please wait a minute...
New Technology of Library and Information Service  2014, Vol. 30 Issue (12): 10-17    DOI: 10.11925/infotech.1003-3513.2014.12.02
Current Issue | Archive | Adv Search |
Analysis for the Search Behavior of Web Users
Chen Yong1, Li Honglian1, Lv Xueqiang2
1. School of Information and Communication Engineering, Beijing Information Science and Technology University, Beijing 100101, China;
2. Beijing Key Laboratory of Internet Culture and Digital Dissemination Research, Beijing Information Science and Technology University, Beijing 100101, China
Export: BibTeX | EndNote (RIS)      

[Objective] To count and analyze for the data of Web users behavior, provide the basis for further improving the performance of search engines. [Methods] Analyze the characteristics of users' query and the user's query results that the search engine returns. To introduce the concept of entropy, quantify the behavior of interaction process of users and search engines. [Results] In all user records, no spaces queries accounted for 93.66%, 83.59% of the users use a longer query, user's certainty click reaches 64.26%, and 71.26% of the users view the first three return results. [Limitations] The size of the user's query may affect the result of the analysis in a certain extent. [Conclusions] The results show that the user's click on the reliability is closely related to the certainty, search engine has some defects on positioning of the long query words.

Key wordsUser behavior      Log analysis      Search engine      Entropy     
Received: 26 June 2014      Published: 20 January 2015
:  TP391  

Cite this article:

Chen Yong, Li Honglian, Lv Xueqiang. Analysis for the Search Behavior of Web Users. New Technology of Library and Information Service, 2014, 30(12): 10-17.

URL:     OR

[1] Wu T, He H, Gu X, et al. An Intelligent Network User Behavior Analysis System Based on Collaborative Markov Model and Distributed Data Processing [C]. In: Proceedings of the 17th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Whistler, BC, Canada. IEEE, 2013: 221-228.
[2] Burke R. Hybrid Recommender Systems: Survey and Experiments [J]. User Modeling and User-Adapted Interaction, 2002, 12(4): 331-370.
[3] Silvestri F. Mining Query Logs: Turning Search Usage Data into Knowledge [J]. Foundations and Trends in Information Retrieval, 2010, 4(1-2): 1-174.
[4] Silverstein C, Henzinger M R, Marais H, et al. Analysis of a Very Large Web Search Engine Query Log [J]. ACM Special Interest Group on Information Retrieval (SIGIR), 1999, 33(1): 6-12.
[5] Eickhoff C, Teevan J, White R, et al. Lessons from the Journey: A Query Log Analysis of Within-session Learning [C]. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining. ACM, 2014: 223-232.
[6] Park M, Lee T. Understanding Science and Technology Information Users Through Transaction Log Analysis [J]. Library Hi Tech, 2013, 31(1): 123-140.
[7] Jiang S, Zilles S, Holte R. Query Suggestion by Query Search: A New Approach to User Support in Web Search[C]. In: Proceedings of the IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, Milan, Italy. IET, 2009, 1: 679-684.
[8] Mei Q, Zhou D, Church K. Query Suggestion Using Hitting Time [C]. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management. ACM, 2008: 469-478.
[9] Downey D, Dumais S, Liebling D, et al. Understanding the Relationship Between Searchers' Queries and Information Goals[C]. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management. ACM, 2008: 449-458.
[10] 余慧佳, 刘奕群, 张敏, 等. 基于大规模日志分析的搜索引擎用户行为分析[J]. 中文信息学报, 2007, 21(1): 109-114. (Yu Huijia, Liu Yiqun, Zhang Min, et al. Research in Search Engine User Behavior Based on Analysis [J]. Journal of Chinese Information Processing , 2007, 21(1): 109-114.)
[11] 姚婷, 张敏, 刘奕群, 等. 低频查询的用户行为分析和类别研究[J]. 计算机研究与发展, 2012, 49(11): 2368-2375. (Yao Ting, Zhang Min, Liu Yiqun, et al. Empirical Study on Rare Query Categorization[J]. Journal of Computer Research and Development, 2012, 49(11): 2368-2375.)
[12] 万飞, 赵溪, 梁循, 等. 基于移动互联网日志的搜索引擎用户行为研究[J]. 中文信息学报, 2014, 28(2): 144-150. (Wan Fei, Zhao Xi, Liang Xun, et al. Search Behavior Study Based on the Mobile SearchLog [J]. Journal of Chinese Information Processing , 2014, 28(2): 144-150.)
[13] 张磊, 李亚楠, 王斌, 等. 网页搜索引擎查询日志的 Session 划分研究[J]. 中文信息学报, 2009, 23(2): 54-61. (Zhang Lei, Li Ya'nan, Wang Bin, et al. Session Segmentation Based on Query Logs of Web Search [J]. Journal of Chinese Information Processing, 2009, 23(2): 54-61.)
[14] 刘健, 刘奕群, 马少平, 等. 搜索引擎用户行为与用户满意度的关联研究[J]. 中文信息学报, 2014, 28(1): 73-79. (Liu Jian, Liu Yiqun, Ma Shaoping, et al. Analysis into the Relationship Between Research of Search Engine User Behavior and User Satisfaction Evaluation [J]. Journal of Chinese Information Processing, 2014, 28(1): 73-79.)
[15] 朱玲, 聂华. 通过日志挖掘研究图书馆资源发现服务用户的搜索行为[J]. 现代图书情报技术, 2011(12): 74-78. (Zhu Ling, Nie Hua. Research of User's Searching Behaviour of Library Resources Discovery Service by Log Mining [J]. New Technology of Library and Information Service, 2011(12): 74-78.)
[16] 董志安, 吕学强. 基于百度搜索日志的用户行为分析[J]. 计算机应用与软件, 2013, 30(7): 17-20. (Dong Zhian, Lv Xueqiang. Use Behaviour Analyses Based on Baidu Search Logs [J]. Computer Applications and Software, 2013, 30(7): 17-20.)
[17] 窦志成, 袁晓洁, 何松柏. 大规模中文搜索日志中查询重复性分析[J]. 计算机工程, 2008, 34(21): 40-41, 44. (Dou Zhicheng, Yuan Xiaojie, He Songbai. Analysis of Query Repetition in Large-scale Chinese Search Log [J]. Computer Engineering, 2008, 34(21): 40-41, 44.)
[18] 王倩, 刘奕群, 马少平, 等. 面向用户互联网访问日志的异常点击分析[J]. 中文信息学报, 2010, 24(3): 44-48, 61. (Wang Qian, Liu Yiqun, Ma Shaoping, et al. Abnormal Click Analysis in Web User Access Logs [J]. Journal of Chinese Information Processing, 2010, 24(3): 44-48, 61.)
[19] 赖茂生, 屈鹏. 搜索引擎查询日志的词性标注和挖掘研究[J]. 现代图书情报技术, 2009(4): 50-56. (Lai Maosheng, Qu Peng. The POS & Mining Study on Search Engine's Query Log [J]. New Technology of Library and Information Service, 2009(4): 50-56.)
[20] 岑荣伟, 刘奕群, 张敏, 等. 基于日志挖掘的搜索引擎用户行为分析[J]. 中文信息学报, 2010, 24(3): 49-54. (Cen Rongwei, Liu Yiqun, Zhang Min, et al. Search Engine User Behavior Analysis Based on Log Mining [J]. Journal of Chinese Information Processing, 2010, 24(3): 49-54.)
[21] 王浩, 姚长利, 郭琳, 等. 基于中文搜索引擎网络信息用户行为研究[J]. 计算机应用研究, 2009, 26(12): 4665-4668. (Wang Hao, Yao Changli, Guo Lin, et al. Research on Web User Behavior Based on Chinese Search Engine [J]. Application Research of Computers, 2009, 26(12): 4665-4668.)
[22] Jansen B J, Spink A, Bateman J, et al. Real Life Information Retrieval: A Study of User Queries on the Web[J]. ACM SIGIR Forum, 1998, 32(1): 5-17.
[23] Shannon C E. A Mathematical Theory of Communication[J]. SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1): 3-55.
[24] 岑荣伟, 刘奕群, 张敏, 等. 网络检索用户行为可靠性分析[J]. 软件学报, 2010, 21(5): 1055-1066. (Cen Rongwei, Liu Yiqun, Zhang Min, et al. Reliability Analysis for the Behavior of Web Retrieval Users [J]. Journal of Software, 2010, 21(5): 1055-1066.)

[1] Zhu Hou,Fang Qingyan. Quantifying and Examining Privacy Paradox of Social Media Users[J]. 数据分析与知识发现, 2021, 5(7): 111-125.
[2] Jianhua Hou,Pan Liu. Measuring Tech-Entropy of System Evolution: An Empirical Study of Patents[J]. 数据分析与知识发现, 2019, 3(8): 21-29.
[3] Yan Wen,Lijian Ma,Qingtian Zeng,Wenyan Guo. POI Recommendation Based on Geographic and Social Relationship Preferences[J]. 数据分析与知识发现, 2019, 3(8): 30-39.
[4] Lu An,Yanping Liang. Selection of Users’ Behaviors Towards Different Topics of Microblog on Public Health Emergencies[J]. 数据分析与知识发现, 2019, 3(4): 33-41.
[5] Linna Xi,Yongxiang Dou. Examining Reposts of Micro-bloggers with Planned Behavior Theory[J]. 数据分析与知识发现, 2019, 3(2): 13-20.
[6] Bi Datian,Wang Fu. Multidimensional Information Acceptance Contexts of Mobile Library[J]. 数据分析与知识发现, 2018, 2(7): 101-111.
[7] Zhou Xiang,Zhang Pengyi,Wang Jun. Impacts of Information Browsing Behaviors on Mobile Shopping: Case Study of Commerce APP Click Stream Analysis[J]. 数据分析与知识发现, 2018, 2(4): 1-9.
[8] Wu Jiang,He Chaocheng,Gong Zheng. Analyzing Decentralization and Performance of 2017 NBA Final Teams with Weighted Directed Network Entropy[J]. 数据分析与知识发现, 2018, 2(2): 37-45.
[9] Jia Xiaoting,Wang Mingyang,Cao Yu. Automatic Abstracting of Chinese Document with Doc2Vec and Improved Clustering Algorithm[J]. 数据分析与知识发现, 2018, 2(2): 86-95.
[10] Wang Zhongyi,Zhang Heming,Huang Jing,Li Chunya. Studying Knowledge Dissemination of Online Q&A Community with Social Network Analysis[J]. 数据分析与知识发现, 2018, 2(11): 80-94.
[11] Chen Runwen,Qiu Yong,Huang Wenbin,Wang Jun. Analyzing Private College Students’ Online Lifestyle with Web-logs[J]. 数据分析与知识发现, 2017, 1(8): 31-38.
[12] Chen Yuan,Liu Fuzhen,Wu Jiang. Studying Users’ Interaction Behaviors of Sharing Economic Platform with 2-Mode Complex Network Analysis[J]. 数据分析与知识发现, 2017, 1(6): 72-82.
[13] Xia Lixin,Yang Jinqing,Cheng Xiufeng. Collecting Mobile Data Based on Content Awareness——An Empirical Study[J]. 数据分析与知识发现, 2017, 1(5): 82-93.
[14] Hou Jianhua,Guo Shuang. Analyzing Emerging Issues with Technology Entropy Method Based on Patents: Case Study of Carbon Capture[J]. 数据分析与知识发现, 2017, 1(1): 55-63.
[15] Liu Tong,Ni Weijian,Liu Mei. Identifying Terminology from Search Engine Query Logs[J]. 现代图书情报技术, 2016, 32(2): 25-33.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938