Please wait a minute...
New Technology of Library and Information Service  2014, Vol. 30 Issue (12): 27-35    DOI: 10.11925/infotech.1003-3513.2014.12.04
Current Issue | Archive | Adv Search |
Research on Ontology-based Cloud Services Semantic Retrieval System
Tang Shouli1,2, Xu Baoxiang1
1. School of Management, Jilin University, Changchun 130022, China;
2. Information Management College, Heilongjiang University, Harbin 150080, China
Export: BibTeX | EndNote (RIS)      

[Objective] As the number of available cloud services increases exponentially, the problem of cloud service discovery and selection arises. [Methods] Semantic retrieval technology in use of information retrieval, semantic analysis and information fusion can improve retrieval efficiency. Combined with Ontology technology can ensure search processes accuracy and consistency, and realize cloud service discovery and selection. [Results] This paper can semantically represent and semantically annotate cloud services. According to extracting semantically annotate terms, it applies vector value to create semantic indexing. Using semantic search engine calculate vector space value between query sentence and index data, and obtain documents similarity. [Limitations] Relevant algorithms involved in some semantic retrieval system are still in development. This paper researches semantic retrieval system as a whole, every module just applies these basic algorithms, algorithm improvement is not involved. [Conclusions] Empirical research proves Ontology technology applied in semantic retrieval system achieves good effects. Especially it is suitable for retrieval of unstructured information, when changes between Ontology and semantic need to keep consistency.

Key wordsOntology      Semantic annotation      Term extraction      Semantic retrieval      Cloud services     
Received: 06 August 2014      Published: 20 January 2015
:  TP391.1  

Cite this article:

Tang Shouli, Xu Baoxiang. Research on Ontology-based Cloud Services Semantic Retrieval System. New Technology of Library and Information Service, 2014, 30(12): 27-35.

URL:     OR

[1] Arpirezs J, Perez A G, Lozano A, et al. (Onto)2 Agent:An Ontology-based www broker to Select Ontologies [C]. In: Proceedings of the Workshop on Application of OntoLogies and Problem-Solving Methods. 1998: 16-24.
[2] OntoBroker [EB/OL]. [2014-08-27]. en/products/ontobroker/.
[3] Scalable Knowledge Composition(SKC) [EB/OL]. [2014-08-27].
[4] W3C Semantic Web Activity [EB/OL]. [2014-08-27]. http://
[5] Cost R S, Finin T, Joshi A, et al. ITTALKS:A Case Study in the Semantic Web [J]. IEEE Intelligent Systems, 2002, 17(1): 40-47.
[6] Peim M, Franconi E, Paton N W, et al. Query Processing with Description Logic Ontologies over Object-Wrapped Databases [C]. In: Proceedings of the 14th International Conference on Scientific and Statistical Database Management (SSDBM). IEEE Computer Society, 2002: 27-36.
[7] Guo M, Li S, Dong J, et al. Ontology-based Product Data Integration [C]. In: Proceedings of the 17th International Conference on Advanced Information Networking and Applications (AINA), Xi'an, China. IEEE Computer Society, 2003: 530-533.
[8] 陈刚, 陆汝钤, 金芝. 基于领域知识重用的虚拟领域本体构造[J]. 软件学报, 2003, 14(3): 350-355. (Chen Gang, Lu Ruqian, Jin Zhi. Constructing Virtual Domain Ontologies Based on Domain Knowledge Reuse [J]. Journal of Software, 2003, 14(3): 350-355.)
[9] 武成岗, 焦文品, 田启家, 等. 基于本体论和多主体的信息检索服务器[J]. 计算机研究与发展, 2001, 38(6): 641-647. (Wu Chenggang, Jiao Wenpin, Tian Qijia, et al. An Information Retrieval Server Based on Ontology and Multi-Agent [J]. Journal of Computer Research and Development, 2001, 38(6): 641-647.)
[10] Armbrust M, Fox A, Griffith R, et al. A View of Cloud Computing [J]. Communications of the ACM, 2010, 53(4): 50-58.
[11] Masseroli M, Ghisalberti G. Bio-SeCo: Integration and Global Ranking of Biomedical Search Results [A].//Ceri S, Brambilla M. Search Computing: Trends and Developments [M]. Springer, 2011: 203-214.
[12] Hitzler P, Krotszsch M, Rudolph S, 等. 语义Web技术基础[M]. 北京: 清华大学出版社, 2012: 13-18. (Hitzler P, Krotszsch M, Rudolph S, et al. Foundations of Semantic Web Technologies [M]. Beijing: Tsinghua University Press, 2012: 13-18.)
[13] Gruber T R. A Translation Approach to Portable Ontology Specifications [J]. Knowledge Acquisition, 1993, 5(2): 199-220.
[14] Fensel D. Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce [M]. Springer, 2003: 90-96.
[15] Garside R, Smith N. A Hybrid Grammatical Tagger: CLAWS4 [A].//Garside R, Leech Gand, McEnery A. Corpus Annotation: Linguistic Information from Computer Text Corpora [M]. London: Longman, 1997: 102-121.
[16] Devedzic V, Gasevic D. Web 2.0 and Semantic Web, Annals of Information Systems [M]. Springer, 2009: 25-54.
[17] 刘豹, 张桂平, 蔡东风. 基于统计和规则相结合的科技术语自动抽取研究[J]. 计算机工程与应用, 2008, 44(23): 147-150. (Liu Bao, Zhang Guiping, Cai Dongfeng. Technical Term Automatic Extraction Research Based on Statistics and Rules [J]. Computer Engineering and Applications, 2008, 44(23): 147-150.
[18] Kageura K,Umino B. Methods of Automatic Term Recognition:A Review [J]. Terminology, 1996, 3(2): 259-289.
[19] Frantzi K, Ananiadou S, Mima H. Automatic Recognition of Multi-word Terms: The C-value/NC-value Method [J]. International Journal on Digital Libraries, 2000, 3(2): 115-130.
[20] 朱靖波, 陈文亮. 基于领域知识的文本分类[J]. 东北大学学报: 自然科学版, 2005, 26 (8): 733-735. (Zhu Jingbo, Chen Wenliang. An Approach Based on Domain Knowledge to Text Categorization [J]. Journal of Northeastern University: Natural Science, 2005, 26(8): 733-735.)
[21] Barrón-Cedeño A, Sierra G, Drouin P, et al. An Improved Automatic Term Recognition Method for Spanish [A].//Computational Linguistics and Intelligent Text Processing [M]. Lecture Notes in Computer Science, 2009, 5449: 126-136.
[22] Kawai Y, Fujita Y, Kumamoto T, et al. Using a Sentiment Map for Visualizing Credibility of News Sites on the Web[C]. In: Proceedings of the 2nd ACM Workshop on Information Credibility on the Web (WICOW 2008). New York, NY, USA: ACM, 2008: 53-58.
[23] Castells P, Fernández M, Vallet D.An Adaptation of the Vector-space Model for Ontology-based Information Retrieval [J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(2): 261-272.
[24] 台德艺, 王俊. 文本分类特征权重改进算法[J]. 计算机工程, 2010, 36(9): 197-199. (Tai Deyi, Wang Jun. Improved Feature Weighting Algorithm for Text Categorization [J]. Computer Engineering, 2010, 36(9): 197-199.)

[1] Sheng Shu, Huang Qi, Yang Yang, Xie Qiwen, Qin Xinguo. Exchanging Chinese Medical Information Based on HL7 FHIR[J]. 数据分析与知识发现, 2021, 5(11): 13-28.
[2] Zeng Zhen,Li Gang,Mao Jin,Chen Jinghao. Data Governance and Domain Ontology of Regional Public Security[J]. 数据分析与知识发现, 2020, 4(9): 41-55.
[3] Liu Liu,Qin Tianyun,Wang Dongbo. Automatic Extraction of Traditional Music Terms of Intangible Cultural Heritage[J]. 数据分析与知识发现, 2020, 4(12): 68-75.
[4] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[5] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[6] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[7] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[8] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[9] He Youshi,He Shufang. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[10] Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[11] Pang Beibei,Gou Juanqiong,Mu Wenxin. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[12] Ding Shengchun,Liu Menglu,Fu Zhu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[13] Tu Haili,Tang Xiaobo. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[14] Chen Erjing,Jiang Enbo. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[15] Bai Rujiang,Leng Fuhai,Liao Junhua. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938