Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (3): 101-107    DOI: 10.11925/infotech.1003-3513.2015.03.13
Current Issue | Archive | Adv Search |
Research on a Lightweight Academic Library Context-aware Recommendation Service Platform Based on GimbalTM
Lu Xiaoming
School of Information Management, Zhengzhou University, Zhengzhou 450001, China
Export: BibTeX | EndNote (RIS)      

[Objective] The article constructs a lightweight context-aware recommendation service platform based on GimbalTM of Qualcomm. [Context] Acquiring users' geographic positions and interests from mobile terminals, and then providing context-aware personalized service can improve user experience in library. [Methods] Select Gimbal SDK in Android environment to develop client application of academic library context-aware service, and set up Gimbal Manager parameters, including Geo-fences, communication triggers and information service content. Then, Gimbal Manager acquires user context and interests actively and pushes information content according to triggers condition. [Results] When the Android mobile phone users who install client applications enter different Geo-fences, they will receive information corresponding to personal interests pushed by Gimbal Manager. [Conclusions] The platform can provide context-aware personalized service and improve library service quality.

Key wordsGimbalTM      Academic library      Context-aware      Personalized recommendation     
Received: 09 September 2014      Published: 16 April 2015
:  G250.7  

Cite this article:

Lu Xiaoming. Research on a Lightweight Academic Library Context-aware Recommendation Service Platform Based on GimbalTM. New Technology of Library and Information Service, 2015, 31(3): 101-107.

URL:     OR

[1] Gimbal SDK助力开发者让智能手机更加智能[EB/OL]. [2014-07-02]. 06/27/gimbal-sdkzhu-li-kai-fa-zhe-rang-zhi-neng-shou-ji-geng-jia-zhi-neng. (Gimbal SDK Assists Developers to Make Intelligence Mobile Phone Smarter [EB/OL]. [2014-07-02].
[2] 高通推Gimbal定位技术:精度可达0.3米[EB/OL]. [2014- 06-15]. (Qualcomm Introduces Gimbal Location Technology: The Accuracy Reaches 0.3 Meters [EB/OL]. [2014-06-15]. http://news.zol.
[3] GimbalTM SDK for Android Documentation [R]. Gimbal, Inc., 2014.
[4] Cantador I, Castells P. Semantic Contextualisation in a News Recommender System [C]. In: Proceedings of CARS 2009, New York, USA. 2009.
[5] Yu Z, Zhou X, Zhang D, et al. Supporting Context-aware Media Recommendations for Smart Phones [J]. IEEE Pervasive Computing, 2006, 5(3): 68-75.
[6] Van Setten M, Pokraev S, Koolwaaij J. Context-aware Recommendations in the Mobile Tourist Application COMPASS [C]. In: Proceedings of the 3rd International Conference on Adaptive Hypermedia 2004, Eindhoven, The Netherlands. Springer Berlin Heidelberg, 2004: 235-244.
[7] The GimbalTM Context Aware Platform-Digital Insights into the Physical World: The Advantages of Gimbal for Retailers, Brands and Application Developers [R]. Qualcomm Retail Solutions Inc., 2013.
[8] Gimbal和YinzCam合作用Beacons增强体育迷的体验[EB/OL]. [2014-07-21]. 07/d55fec6e11050ccf.html. (Gimbal and YinzCam Cooperate to Take Advantage of Beacons to Enhance Sports Fans Experience [EB/OL]. [2014-07-21]. http://news.rfidworld.
[9] Android开发环境搭建[EB/OL]. [2014-04-28]. http:// jingyan. baidu. com/article/f0062228f0b18afbd2f0c871.html. (Building Android Development Environment [EB/OL]. [2014-04-28]. fbd2f0c871.html.)

[1] Wang Yuzhu,Xie Jun,Chen Bo,Xu Xinying. Multi-modal Sentiment Analysis Based on Cross-modal Context-aware Attention[J]. 数据分析与知识发现, 2021, 5(4): 49-59.
[2] Wu Yanwen, Cai Qiuting, Liu Zhi, Deng Yunze. Digital Resource Recommendation Based on Multi-Source Data and Scene Similarity Calculation[J]. 数据分析与知识发现, 2021, 5(11): 114-123.
[3] Ding Hao, Ai Wenhua, Hu Guangwei, Li Shuqing, Suo Wei. A Personalized Recommendation Model with Time Series Fluctuation of User Interest[J]. 数据分析与知识发现, 2021, 5(11): 45-58.
[4] Yiwen Zhang,Chenkun Zhang,Anju Yang,Chengrui Ji,Lihua Yue. A Conditional Walk Quadripartite Graph Based Personalized Recommendation Algorithm[J]. 数据分析与知识发现, 2019, 3(4): 117-125.
[5] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[6] Hao Ding,Shuqing Li. Personalized Recommendation Based on Predictive Analysis of User’s Interests[J]. 数据分析与知识发现, 2019, 3(11): 43-51.
[7] Li Jie,Yang Fang,Xu Chenxi. A Personalized Recommendation Algorithm with Temporal Dynamics and Sequential Patterns[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[8] Chen Meimei,Xue Kangjie. Personalized Recommendation Algorithm of Multi-faceted Trust Tensor Based on Tag Clustering[J]. 数据分析与知识发现, 2017, 1(5): 94-101.
[9] Chen Meimei,Xue Kangjie. Personalized Recommendation Algorithm Based on Modified Tensor Decomposition Model[J]. 数据分析与知识发现, 2017, 1(3): 38-45.
[10] Tan Xueqing,Zhang Lei,Huang Cuicui,Luo Lin. A Collaborative Filtering and Recommendation Algorithm Using Trust of Domain-Experts and Similarity[J]. 现代图书情报技术, 2016, 32(7-8): 101-109.
[11] Hong Liang,Qian Chen,Fan Xing. Context-aware Recommendation System for Mobile Digital Libraries[J]. 现代图书情报技术, 2016, 32(7-8): 110-119.
[12] Xie Qi,Cui Mengtian. Group Similarity Based Hybrid Web Service Recommendation Algorithm[J]. 现代图书情报技术, 2016, 32(6): 80-87.
[13] Zhu Ting, Qin Chunxiu, Li Zuhai. Research on Collaborative Filtering Personalized Recommendation Method Based on User Classification[J]. 现代图书情报技术, 2015, 31(6): 13-19.
[14] Gao Huming, Zhao Fengyue. A Hybrid Recommendation Method Combining Collaborative Filtering and Content Filtering[J]. 现代图书情报技术, 2015, 31(6): 20-26.
[15] Song Meiqing. Research on Multi-granularity Users' Preference Mining Based on Collaborative Filtering Personalized Recommendation[J]. 现代图书情报技术, 2015, 31(12): 28-33.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938