Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (6): 13-19    DOI: 10.11925/infotech.1003-3513.2015.06.03
Current Issue | Archive | Adv Search |
Research on Collaborative Filtering Personalized Recommendation Method Based on User Classification
Zhu Ting, Qin Chunxiu, Li Zuhai
School of Economics and Management, Xidian University, Xi'an 710071, China
Export: BibTeX | EndNote (RIS)      

[Objective] To solve the problem of low efficiency of the algorithm with the increasing number of users. [Methods] This paper proposes a method of collaborative filtering based on user classification. Firstly, the huge users are classified into several groups according to a rule-based classification method. Then, with the guarantee of recommendation accuracy, the local neighbor users are discovered for users. Finally, based on the discovered local neighbors, personalized recommendation is conducted. [Results] User classification and recommendation accuracy are evaluated by F1 and MAE separately. The algorithm efficiency is evaluated according to the time complexity. Experimental results show that with the adoption of a rule-based user classification, collaborative filtering algorithm significantly improves with the guarantee of user classification accuracy and recommendation accuracy. [Limitations] The recommendation accuracy is reduced a little bit. The proposed method is only tested on MovieLens data set, and it needs further validation in other data sets. [Conclusions] This method reduces the computation of local neighbors user identification, while improves the efficiency of the algorithm.

Key wordsPersonalized recommendation      Collaborative filtering      User classification      Rule     
Received: 31 December 2014      Published: 08 July 2015
:  G350  

Cite this article:

Zhu Ting, Qin Chunxiu, Li Zuhai. Research on Collaborative Filtering Personalized Recommendation Method Based on User Classification. New Technology of Library and Information Service, 2015, 31(6): 13-19.

URL:     OR

[1] 中国互联网络信息中心.第34次中国互联网络发展状况统计报告[EB/OL]. [2014-07-21]. (China Internet Network Information Center. The 34th Statistical Report on Internet Development in China [EB/OL]. [2014-07-21].
[2] 安悦, 李兵, 杨瑞泰, 等. 基于内容的热门微话题个性化推荐研究 [J]. 情报杂志, 2014, 33(2): 155-160. (An Yue, Li Bing, Yang Ruitai, et al. Content-based Personalized Recommendation on Popular Micro-topic [J]. Journal of Intelligence, 2014, 33(2): 155-160.)
[3] 索琪, 卢涛. 基于关联规则的电子商务推荐系统研究[J]. 哈尔滨师范大学自然科学学报, 2005, 21(2): 50-53. (Suo Qi, Lu Tao. Research on Recommender System Based on Association Rules [J]. Natural Sciences Journal of Harbin Normal University, 2005, 21(2): 50-53.)
[4] 范波, 程久军. 用户间多相似度协同过滤推荐算法[J]. 计算机科学, 2012, 39(1): 23-26. (Fan Bo, Cheng Jiujun. Collaborative Filtering Recommendation Algorithm Based on User's Multi-similarity [J]. Computer Science, 2012, 39(1): 23-26.)
[5] 王玉斌, 孟祥武, 胡勋. 一种基于信息老化的协同过滤推荐算法[J]. 电子与信息学报, 2013, 35(10): 2391-2396. (Wang Yubin, Meng Xiangwu, Hu Xun. Information Aging- based Collaborative Filtering Recommendation Algorithm [J]. Journal of Electronics & Information Technology, 2013, 35(10): 2391-2396.)
[6] Massa P, Avesani P. Trust-aware Collaborative Filtering for Recommender Systems [C]. In: Proceedings of the 2004 International Conference on Cooperative Information Systems, Agia Napa, Cyprus. 2004.
[7] Sarwar B M, Karypis G, Konstan J, et al. Application of Dimensionality Reduction in Recommender System—A Case Study [C]. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Workshop on Web Mining for E-Commerce— Challenges and Opportunities (WEBKDD'00). 2000.
[8] 李玲俐. 数据挖掘中分类算法综述 [J]. 重庆师范大学学报: 自然科学版, 2011, 28(4): 44-47. (Li Lingli. A Review on Classification Algorithms in Data Mining [J]. Journal of Chongqing Normal University: Natural Science, 2011, 28(4): 44-47.)
[9] Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules [C]. In: Proceedings of the 20th International Conference on Very Large Data Bases. 1994.
[10] 杨丽娜, 刘科成, 颜志军. 虚拟研究社区中的知识分享与个性化知识推荐[J]. 中国电化教育, 2010(6): 108-112. (Yang Li'na, Liu Kecheng, Yan Zhijun. Knowledge Sharing and Personalized Knowledge Recommendation in Virtual Research Community [J]. CET China Educational Technology, 2010(6): 108-112.)
[11] Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-art and Possible Extensions [J]. IEEE Transaction on Knowledge and Data Engineering, 2005, 17(6): 734-749.
[12] Sarwar B, Karypis G, Konstan J, et al. Item-based Collaborative Filtering Recommendation Algorithms [C]. In: Proceedings of the 10th International Conference on World Wide Web. ACM, 2001: 285-295.
[13] Sarwar B, Karypis G, Konstan J, et al. Analysis of Recommendation Algorithms for E-commerce [C]. In: Proceedings of the 2nd ACM Conference on Electronic Commerce. ACM, 2000: 158-167.
[14] Pazzani M, Billsus D. Learning and Revising User Profiles: The Identification of Interesting Web Sites [J]. Machine Learning, 1997, 27(3): 313-331.
[15] 夏培勇. 个性化推荐技术中的协同过滤算法研究[D]. 青岛: 中国海洋大学, 2011. (Xia Peiyong. Research on Collaborative Filtering Algorithm of Personalized Recommendation Technology [D]. Qingdao: China Ocean University, 2011.)
[16] 郭艳红. 推荐系统的协同过滤算法与应用研究 [D]. 大连: 大连理工大学, 2008. (Guo Yanhong. On Collaborative Filtering Algorithm and Applications of Recommender Systems [D]. Dalian: Dalian University of Technology, 2008.)

[1] Wu Yanwen, Cai Qiuting, Liu Zhi, Deng Yunze. Digital Resource Recommendation Based on Multi-Source Data and Scene Similarity Calculation[J]. 数据分析与知识发现, 2021, 5(11): 114-123.
[2] Li Zhenyu, Li Shuqing. Deep Collaborative Filtering Algorithm with Embedding Implicit Similarity Groups[J]. 数据分析与知识发现, 2021, 5(11): 124-134.
[3] Ding Hao, Ai Wenhua, Hu Guangwei, Li Shuqing, Suo Wei. A Personalized Recommendation Model with Time Series Fluctuation of User Interest[J]. 数据分析与知识发现, 2021, 5(11): 45-58.
[4] Yang Chen, Chen Xiaohong, Wang Chuhan, Liu Tingting. Recommendation Strategy Based on Users’ Preferences for Fine-Grained Attributes[J]. 数据分析与知识发现, 2021, 5(10): 94-102.
[5] Yang Heng,Wang Sili,Zhu Zhongming,Liu Wei,Wang Nan. Recommending Domain Knowledge Based on Parallel Collaborative Filtering Algorithm[J]. 数据分析与知识发现, 2020, 4(6): 15-21.
[6] Su Qing,Chen Sizhao,Wu Weimin,Li Xiaomei,Huang Tiankuan. Personalized Recommendation Model Based on Collaborative Filtering Algorithm of Learning Situation[J]. 数据分析与知识发现, 2020, 4(5): 105-117.
[7] Zheng Songyin,Tan Guoxin,Shi Zhongchao. Recommending Tourism Attractions Based on Segmented User Groups and Time Contexts[J]. 数据分析与知识发现, 2020, 4(5): 92-104.
[8] Li Tiejun,Yan Duanwu,Yang Xiongfei. Recommending Microblogs Based on Emotion-Weighted Association Rules[J]. 数据分析与知识发现, 2020, 4(4): 27-33.
[9] Wei Wei,Guo Chonghui,Xing Xiaoyu. Annotating Knowledge Points & Recommending Questions Based on Semantic Association Rules[J]. 数据分析与知识发现, 2020, 4(2/3): 182-191.
[10] Ding Yong,Chen Xi,Jiang Cuiqing,Wang Zhao. Predicting Online Ratings with Network Representation Learning and XGBoost[J]. 数据分析与知识发现, 2020, 4(11): 52-62.
[11] Mingxuan Huang,Shoudong Lu,Hui Xu. Cross-Language Information Retrieval Based on Weighted Association Patterns and Rule Consequent Expansion[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[12] Gang Li,Huayang Zhou,Jin Mao,Sijing Chen. Classifying Social Media Users with Machine Learning[J]. 数据分析与知识发现, 2019, 3(8): 1-9.
[13] Fusen Jiao,Shuqing Li. Collaborative Filtering Recommendation Based on Item Quality and User Ratings[J]. 数据分析与知识发现, 2019, 3(8): 62-67.
[14] Shan Li,Yehui Yao,Hao Li,Jie Liu,Karmapemo. ISA Biclustering Algorithm for Group Recommendation[J]. 数据分析与知识发现, 2019, 3(8): 77-87.
[15] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938