Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (6): 93-100    DOI: 10.11925/infotech.1003-3513.2015.06.14
Current Issue | Archive | Adv Search |
“State-Behavior” Modeling and Its Application in Analyzing Product Information Seeking Behavior of E-commerce Websites Users
Yuan Xingfu, Zhang Pengyi, Wang Jun
Department of Information Management, Peking University, Beijing 100871, China
Export: BibTeX | EndNote (RIS)      

[Objective] This research aims to develop an approach to model and describe the user information behaviors during information seeking, product comparison, and decision-making process more systematically and precisely. [Methods] This paper proposes a user “state-behavior” model including sequential, temporal, and content features. Test data set includes the click-through log data of 4 710 users from The user behavior sequences are established by mapping page types and user behaviors, and then used as features to model users' “status-behavior” at the session level. [Results] Classification using the “state-behavior” model resulted 8 user groups with significant features, including swift searchers, serendipitous browsers, promotion-driven users, personal information maintainers, weekday-active users, weekend-active users, night-active users, and irregular users. [Limitations] Adding a session layer between logs and user behavior may cause accumulation of classification errors at the session level into the behavior level. [Conclusions] The results show that this model is able to capture the behavior sequence more precisely. The classification of users may be used in guiding personalized recommendation and marketing plans for e-commerce Websites.

Key wordsClick-through logs      Product information seeking      Action sequence      E-commerce Websites     
Received: 12 December 2014      Published: 08 July 2015
:  G250.2  

Cite this article:

Yuan Xingfu, Zhang Pengyi, Wang Jun. “State-Behavior” Modeling and Its Application in Analyzing Product Information Seeking Behavior of E-commerce Websites Users. New Technology of Library and Information Service, 2015, 31(6): 93-100.

URL:     OR

[1] 中国互联网络信息中心. 中国互联网络发展状况统计报告 [R/OL]. [2015-03-14]. hlwtjbg/201502/P020150203548852631921.pdf. (China Internet Network Information Center. Statistical Report on Internet Development in China [R/OL]. [2015-03-14]. https://www.
[2] 纪征. 基于用户兴趣模型的电子商务网站推荐技术比较及启示[J]. 图书情报工作, 2010, 54(16): 138-140. (Ji Zheng. Recommendation Technology Based on User's Interest Model for the E-commerce Site [J]. Library and Information Service, 2010, 54(16): 138-140.)
[3] Ji J, Liu C, Sha Z, et al. Online Personalized Recommen­dation Based on a Multilevel Customer Model [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2005, 19(7): 895-916.
[4] Montgomery A L, Li S, Srinivasan K, et al. Modeling Online Browsing and Path Analysis Using Clickstream Data [J]. Marketing Science, 2004, 23(4): 579-595.
[5] 马晓艳, 唐雁. 一种基于用户浏览路径的Web用户聚类方法[J]. 西南师范大学学报: 自然科学版, 2009, 34(3): 93-97. (Ma Xiaoyan, Tang Yan. Clustering Web Users Based on Users' Browsing Path [J]. Journal of Southwest China Normal University: Natural Science Edition, 2009, 34(3): 93-97.)
[6] 张波, 巫莉莉, 周敏. 基于Web使用挖掘的用户行为分析[J]. 计算机科学, 2006, 33(8): 213-214. (Zhang Bo, Wu Lili, Zhou Min. The Analysis of User Behavior Based on Web Usage Mining [J]. Computer Science, 2006, 33(8): 213-214.)
[7] Benevenuto F, Rodrigues T, Cha M, et al. Characterizing User Behavior in Online Social Networks [C]. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measure­ment Conference. ACM, 2009.
[8] 王微微, 夏秀峰, 李晓明. 一种基于用户行为的兴趣度模型[J]. 计算机工程与应用, 2012, 48(8): 148-151. (Wang Weiwei, Xia Xiufeng, Li Xiaoming. Personal Interest Degree Model Based on Consumer Behavior [J]. Computer Engineering and Applications, 2012, 48(8): 148-151.)
[9] 伍大清, 阳小华, 马家宇, 等. 基于隐式反馈的用户兴趣漂移方法[J]. 计算机应用与软件, 2010, 27(9): 88-90. (Wu Daqing, Yang Xiaohua, Ma Jiayu, et al. Method of Drifting User's Interests Based on Implicit Feedback [J]. Computer Applications and Software, 2010, 27(9): 88-90.)
[10] 丁宏飞. 个性化电子商务系统中用户兴趣模型的研究[D]. 广州: 暨南大学, 2008. (Ding Hongfei. The Study of User Interest Model in Personalized E-commerce System [D]. Guangzhou: Jinan University, 2008.)
[11] Kohavi R, Parekh R. Ten Supplementary Analyses to Improve E-commerce Web Sites [C]. In: Proceedings of the 5th Workshop on Knowledge Discovery in the Web. Springer- Verlag, 2003.
[12] 赵银春, 付关友, 朱征宇. 基于Web浏览内容和行为相结合的用户兴趣挖掘[J]. 计算机工程, 2005, 31(12): 93-94, 198. (Zhao Yinchun, Fu Guanyou, Zhu Zhengyu. User Interest Mining of Combining Web Content and Behavior Analysis [J]. Computer Engineering, 2005, 31(12): 93-94, 198.)
[13] Moe W W. Buying, Searching, or Browsing: Differentiating Between Online Shoppers Using In-store Navigational Clickstream [J]. Journal of Consumer Psychology, 2003, 13(1): 29-39.
[14] 徐赟, 张盼, 丁婕. 只逛不买的电子商务用户分析——以淘宝网为例[J]. 信息系统学报, 2012(2): 64-75. (Xu Yun, Zhang Pan, Ding Jie. Analysis of “Browsing but Non- shopping” E-commerce Users — An Empirical Research Based on Taobao.Com [J]. China Journal of Information Systems, 2012(2): 64-75.)
[15] 王开选. 用户模型的结构表示及其应用研究[D]. 太原: 山西大学, 2005. (Wang Kaixuan. The Structural Representation and Application of User Profile [D]. Taiyuan: Shanxi University, 2005.)
[16] Cantador I, Bellogín A, Vallet D. Content-based Recommendation in Social Tagging Systems [C]. In: Proceedings of the 4th ACM Conference on Recommender Systems. ACM, 2010.
[17] 袁兴福, 张鹏翼, 刘洪莲, 等. 基于点击流的电商用户会话建模[J]. 图书情报工作, 2015, 59(1): 119-126. (Yuan Xingfu, Zhang Pengyi, Liu Honglian, et al. Modeling E-commerce User Session Behaviors Based on Click-through Sequence [J]. Library and Information Service, 2015, 59(1): 119-126.)

[1] Zhang Pengyi,Wang Danxue,Jiao Yifan,Chen Xiuyu,Wang Jun. Predicting Mobile Purchase Decisions Based on User Browsing Logs[J]. 数据分析与知识发现, 2018, 2(1): 51-63.
[2] Gao Changyuan,Yu Jianping,He Xiaoyan. Knowledge Search for Cloud Computing Industry Alliance: An Algorithm Based on Improved Particle Swarm Optimization[J]. 数据分析与知识发现, 2017, 1(3): 81-89.
[3] Hu Zhenhua,Cai Xin. The Research of Mobile Books-Information Service[J]. 现代图书情报技术, 2004, 20(4): 18-20.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938