Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (7-8): 65-72    DOI: 10.11925/infotech.1003-3513.2015.07.09
Current Issue | Archive | Adv Search |
Agent-Based Modeling and Simulation of Evolution of Netizen Crowd Behavior in Unexpected Events Public Opinion
Wu Peng, Yang Shuang, Zhang Jingjing, Gao Qingning
School of Economics and Management, Nanjing University of Science & Technology, Nanjing 210094, China
Export: BibTeX | EndNote (RIS)      

[Objective] This paper is to analyze evolution path of network public opinion in the emergency management of unexpected events, and discover the relation between evolution of netizen crowd behavior and public opinion of unexpected events. [Methods] Design a Multi-Agent model which involving Agent properties, interaction and game rules among Agents, cross validation method between online and offline, and simulate this Multi-Agent model based on NetLogo system. [Results] With an empirical study, the feasibility of the Multi-Agent is verified. [Limitations] The interaction and game rules of Multi-Agents need to be optimized based on more empirical study in special domain. [Conclusions] Agent-Based Modeling can combine netizen crowd behavior and real environments for modeling and simulating, and can discover the inner rule of the public opinion evolution in the unexpected events.

Received: 12 January 2015      Published: 25 August 2015
:  TP393  

Cite this article:

Wu Peng, Yang Shuang, Zhang Jingjing, Gao Qingning. Agent-Based Modeling and Simulation of Evolution of Netizen Crowd Behavior in Unexpected Events Public Opinion. New Technology of Library and Information Service, 2015, 31(7-8): 65-72.

URL:     OR

[1] 毕宏音. 网络舆情形成与变动中的群体影响分析[J]. 天津大学学报: 社会科学版, 2007, 9(3): 270-274. (Bi Hongyin. Group Influence in the Formation and Change of Network Public Opinion [J]. Journal of Tianjin University: Social Science, 2007, 9(3): 270-274.)
[2] 何炎祥, 陈萃萌. Agent和多Agent系统的设计和应用[M].武汉: 武汉大学出版社, 2001: 13. (He Yanxiang, Chen Cuimeng. The Design and Application of Agent and Multi-agent System [M]. Wuhan: Wuhan University Press, 2001: 13.)
[3] 岳峰, 胡晓峰, 李志强, 等.多智能体涌现生成的群体行为仿真[J]. 系统仿真学报, 2008, 20(Sl): 205-208. (Yue Feng, Hu Xiaofeng, Li Zhiqiang, et al. Generating Crowd Behavior Simulation from Multi-agent's Emergence [J]. Journal of System Simulation, 2008, 20(Sl): 205-208.)
[4] DeAngelis D L, Mooij W M. Individual-based Modeling of Ecological and Evolutionary Processes [J]. Annual Review of Ecology, Evolution and Systematics, 2005, 36: 147-168.
[5] Azahar M A B M, Sunar M S, Daman D, et al. Survey on Real-Time Crowds Simulation [A]// Technologies for E-Learning and Digital Entertainment [M]. Springer Berlin Heidelberg, 2008: 573-580.
[6] 杨志谋, 司光亚, 李志强, 等.群体行为建模理论基础与建模方法研究[J]. 系统仿真学报, 2009, 21(16): 3621-3625, 3630. (Yang Zhimou, Si Guangya, Li Zhiqiang, et al. Basic Theory and Method of Crowd Behavior Modeling [J]. Journal of System Simulation, 2009, 21(16): 3621-3625, 3630.)
[7] 王鑫. 数据驱动的人群动画仿真技术研究[D]. 杭州: 浙江大学, 2009. (Wang Xin. The Simulation Research of Data-driven Crowd Animation [D]. Hangzhou: Zhejiang University, 2009.)
[8] 江世杰, 韩战钢. 复杂系统研究中基于Agent的模型化方法[J]. 上海理工大学学报, 2011, 33(2): 124-129. (Jiang Shijie, Han Zhangang. Agent Based Modeling in Complex System Research [J]. Journal of University of Shanghai for Science and Technology, 2011, 33(2): 124-129.)
[9] 刘炜, 陈俊杰.一种基于Agent的智能元搜索引擎框架[J].计算机工程与应用, 2005(3): 137-138, 211. (Liu Wei, Chen Junjie. A Framework for Intelligent Meta-search Engine Based on Agent [J]. Computer Engineering and Applications, 2005(3): 137-138, 211.)
[10] Mitrovic M, Tadic B. Patterns of Emotional Blogging and Emergence of Communities: Agent-based Model on Bipartite Networks [OL]. [2014-06-07]. arXiv Preprint. arXiv: 1110. 5057.
[11] Sobkowicz P, Kaschesky M, Bouchard G. Opinion Formation in the Social Web: Agent-based Simulations of Opinion Convergence and Divergence[A]// Agents and Data Mining Interaction[M]. Springer Berlin Heidelberg, 2012: 288-303.
[12] Gatti M, Appel A P, Pinhanez C, et al. Large-scale Multi- Agent-based Modeling and Simulation of Microblogging-based Online Social Network [C]. In: Proceedings of the 14th International Workshop on Multi-Agent-based Simulation. 2013.
[13] Sobkowicz P. Modeling Opinion Formation with Physics Tools: Call for Closer Link with Reality [J]. Journal of Artificial Societies and Social Simulation, 2009, 12(1): 11-25.
[14] Birkland T A. After Disaster: Agenda Setting, Public Policy, and Focusing Events [M]. Georgetown University Press, 1997.
[15] 胡正荣.传播学总论[M]. 北京: 北京广播学院出版社, 1997: 312. (Hu Zhengrong. Communication [M]. Beijing: Communication University of China Press, 1997: 312.)
[16] 周斌. "强-弱"冲突案件的网络舆情及传统媒体的理性应对[J]. 新闻爱好者, 2013(11): 29-32. (Zhou Bin. Rational Response of Public Opinion and Traditional Medias in "Stong-Weak" Conflicting Legal cases [J]. Journalism Lover, 2013(11): 29-32.)
[17] 钟扬廉. 基于 UIGP 模型预测分析下的高校网络群体极化研究[J]. 科协论坛, 2012(9): 85-86. (Zhong Yanglian. Research of Group Polarization in University Networks Based on Pridiction of UIGP Model [J]. Science & Technology Association Forum, 2012(9): 85-86.)
[18] Deffuant G, Neau D, Amblard F, et al. Mixing Beliefs among Interacting Agents [J]. Advances in Complex Systems, 2000, 3(1-4): 87-98.

[1] Chen Jie,Ma Jing,Li Xiaofeng. Short-Text Classification Method with Text Features from Pre-trained Models[J]. 数据分析与知识发现, 2021, 5(9): 21-30.
[2] Li Wenna,Zhang Zhixiong. Research on Knowledge Base Error Detection Method Based on Confidence Learning[J]. 数据分析与知识发现, 2021, 5(9): 1-9.
[3] Sun Yu, Qiu Jiangnan. Research on Influence of Opinion Leaders Based on Network Analysis and Text Mining [J]. 数据分析与知识发现, 0, (): 1-.
[4] Wang Qinjie, Qin Chunxiu, Ma Xubu, Liu Huailiang, Xu Cunzhen. Recommending Scientific Literature Based on Author Preference and Heterogeneous Information Network[J]. 数据分析与知识发现, 2021, 5(8): 54-64.
[5] Li Wenna, Zhang Zhixiong. Entity Alignment Method for Different Knowledge Repositories with Joint Semantic Representation[J]. 数据分析与知识发现, 2021, 5(7): 1-9.
[6] Wang Hao, Lin Kerou, Meng Zhen, Li Xinlei. Identifying Multi-Type Entities in Legal Judgments with Text Representation and Feature Generation[J]. 数据分析与知识发现, 2021, 5(7): 10-25.
[7] Yang Hanxun, Zhou Dequn, Ma Jing, Luo Yongcong. Detecting Rumors with Uncertain Loss and Task-level Attention Mechanism[J]. 数据分析与知识发现, 2021, 5(7): 101-110.
[8] Xu Yuemei, Wang Zihou, Wu Zixin. Predicting Stock Trends with CNN-BiLSTM Based Multi-Feature Integration Model[J]. 数据分析与知识发现, 2021, 5(7): 126-138.
[9] Huang Mingxuan,Jiang Caoqing,Lu Shoudong. Expanding Queries Based on Word Embedding and Expansion Terms[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[10] Wang Xiwei,Jia Ruonan,Wei Yanan,Zhang Liu. Clustering User Groups of Public Opinion Events from Multi-dimensional Social Network[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[11] Ruan Xiaoyun,Liao Jianbin,Li Xiang,Yang Yang,Li Daifeng. Interpretable Recommendation of Reinforcement Learning Based on Talent Knowledge Graph Reasoning[J]. 数据分析与知识发现, 2021, 5(6): 36-50.
[12] Liu Tong,Liu Chen,Ni Weijian. A Semi-Supervised Sentiment Analysis Method for Chinese Based on Multi-Level Data Augmentation[J]. 数据分析与知识发现, 2021, 5(5): 51-58.
[13] Chen Wenjie,Wen Yi,Yang Ning. Fuzzy Overlapping Community Detection Algorithm Based on Node Vector Representation[J]. 数据分析与知识发现, 2021, 5(5): 41-50.
[14] Zhang Guobiao,Li Jie. Detecting Social Media Fake News with Semantic Consistency Between Multi-model Contents[J]. 数据分析与知识发现, 2021, 5(5): 21-29.
[15] Yan Qiang,Zhang Xiaoyan,Zhou Simin. Extracting Keywords Based on Sememe Similarity[J]. 数据分析与知识发现, 2021, 5(4): 80-89.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938