Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (7-8): 131-138    DOI: 10.11925/infotech.1003-3513.2015.07.17
Current Issue | Archive | Adv Search |
The Study of Patent Data Warehouse-based Technical Efficiency Map Mining Method——Taking 3D Printing Technology as an Example
Zhai Dongsheng, Cai Liwei, Zhang Jie, Feng Xiuzhen
School of Economics and Management, Beijing University of Technology, Beijing 100124, China
Export: BibTeX | EndNote (RIS)      

[Objective] In order to achieve the micro drilling analysis of technical efficiency map and the recognition of specific patent involved in technical efficiency map. [Methods] This paper proposes a Patent Data Warehouse-based technical efficiency map mining method, which achieves the construction and multidimensional analysis of technical efficiency map by cleaning patent structured information and extracting feature words of unstructured information, combined with the Data Warehouse. [Results] The experiment results show that this method can achieve the objective fastly. [Limitations] However, if the amount of patent data is large, the star model used may reduce efficiency. And the patent feature extraction can't be automated. [Conclusions] This proposed method provides a new way for constructing and mining technical efficiency map.

Received: 17 March 2015      Published: 25 August 2015
:  TP391  

Cite this article:

Zhai Dongsheng, Cai Liwei, Zhang Jie, Feng Xiuzhen. The Study of Patent Data Warehouse-based Technical Efficiency Map Mining Method——Taking 3D Printing Technology as an Example. New Technology of Library and Information Service, 2015, 31(7-8): 131-138.

URL:     OR

[1] 杨春亮. 基于模糊逻辑的专利数据层次分类研究 [D]. 天津: 天津大学, 2008. (Yang Chunliang. Study on Hierarchical Text Categorization of Patent Data Based on Fuzzy Logistic [D]. Tianjin: Tianjin University, 2008.)
[2] 陈颖, 张晓林. 基于特征度和词汇模型的专利技术功效矩阵结构生成研究[J]. 现代图书情报技术, 2012(2): 53-59. (Chen Ying, Zhang Xiaolin. Research of Patent Technology- Effect Matrix Construction Based on Feature Degree and Lexical Model [J]. New Technology of Library and Information Service, 2012 (2): 53-59.)
[3] 唐桂军. 商业智能在企业信息管理系统中的应用研究[D]. 镇江: 江苏科技大学, 2009. (Tang Guijun. Application and Research of Business Intelligence in Industry Management Information System [D]. Zhenjiang: Jiangsu University of Science and Technology, 2009.)
[4] 翟东升, 禾文汇. 异构专利数据源集成方案设计与实现[J]. 现代图书情报技术, 2010 (9): 67-73. (Zhai Dongsheng, He Wenhui. Design and Implementation of Data Integration over Heterogeneous Patent Sources [J]. New Technology of Library and Information Service, 2010 (9): 67-73.)
[5] 翟东升, 袁昕. 面向主题的专利分析系统[J]. 情报杂志, 2012, 31(6): 168-172. (Zhai Dongsheng, Yuan Xin. Subject-oriented Analysis of Patent System [J]. Journal of Intelligence, 2012, 31(6): 168-172.)
[6] 杨忠. 专利信息可视化分析系统构建研究[D]. 湘潭: 湘潭大学, 2013. (Yang Zhong. Research on Building Visual Analysis System of Patent Information [D]. Xiangtan: Xiangtan University, 2013.)
[7] 郭杰. 基于专利数据仓库理论的四川3D打印产业发展研究[D]. 成都: 西华大学, 2014. (Guo Jie. Development of the Sichuan-based 3D Printing Industry Patent Data Warehouse Theory [D]. Chengdu: Xihua University, 2014.)
[8] 王圣顺. 专利文件之专利技术特性及功能知识分析法 [D].台北: 台湾科技大学, 2006. (Wang Shengshun. Patent Technology Characterize and Function Knowledge Analysis of Patent Document [D]. Taipei: The Taiwan University of Science and Technology, 2006.)
[9] Tseng Y H, Wang Y M, Juang D W, et al. Text Mining for Patent Map Analysis [C]. In: Proceedings of IACIS Pacific 2005 Conference, 2005.
[10] Kim Y G, Suh J H, Park S C. Visualization of Patent Analysis for Emerging Technology [J]. Expert Systems with Applications, 2008, 34(3): 1804-1812.
[11] 罗立国. 基于专利信息服务平台的专利地图研究[D]. 武汉: 华中科技大学, 2009. (Luo Liguo. Patent Map Study Based on Patent Information Service Platform [D]. Wuhan: Huazhong University of Science and Technology, 2009.)
[12] Nanba H, Fujii A, Iwayama M, et al. Overview of the Patent Mining Task at the NTCIR-7 Workshop [C]. In: Proceedings of NTCIR-7 Workshop Meeting, Tokyo, Japan. 2008.
[13] 陈颖, 张晓林. 专利技术功效矩阵构建词汇模型研究[J]. 情报科学, 2012, 30(11): 1704-1708. (Chen Ying, Zhang Xiaolin. Research on Lexical Model of Construction of Patent Technology-Effect Matrix [J]. Information Science, 2012, 30 (11): 1704-1708.)
[14] 翟东升, 陈晨, 张杰, 等. 专利信息的技术功效与应用图挖掘研究[J]. 现代图书情报技术, 2012 (7-8): 96-102. (Zhai Dongsheng, Chen Chen, Zhang Jie, et al. The Mining Research of Technical Efficiency and Application Map of Patent Information [J]. New Technology of Library and Information Service, 2012 (7-8): 96-102.)
[15] Cheng T Y, Wang M T. The Patent-Classification Technology/Function Matrix-A Systematic Method for Design Around [J]. Journal of Intellectual Property Rights, 2013, 18(2): 158-167.
[16] 霍翠婷, 蒋勇青, 凌锋, 等. 日本FI/F-term分类体系在专利技术/功效矩阵中的应用研究[J]. 情报杂志, 2013, 32(11): 140-144. (Huo Cuiting, Jiang Yongqing, Ling Feng, et al. Application Study on Patent Technology/Function Matrix Based on Japanese Classification System (FI/F-term) [J]. Journal of Information, 2013, 32(11): 140-144.)
[17] 王丽, 张冬荣, 张晓辉, 等. 利用主题自动标引生成技术功效矩阵[J]. 现代图书情报技术, 2013(5): 80-86. (Wang Li, Zhang Dongrong, Zhang Xiaohui, et al. Realization of Technology/Effect Maps Generating Based on Subject Automatic Indexing [J]. New Technology of Library and Information Service, 2013 (5): 80-86.)
[18] Derwent Innovations IndexSM [DB/OL]. [2015-01-21]. http://
[19] 李倩. 基于专利的新兴技术弱信号识别方法研究[D]. 北京: 北京工业大学, 2014. (Li Qian. The Research of the Emerging Technology Weak Signal Recognition Based on Patent [D]. Beijing: Beijing University of Technology, 2014.)
[20] GATE [EB/OL]. [2015-01-21].

[1] Wang Hong, Shu Zhan, Gao Yinquan, Tian Wenhong. Analyzing Implicit Discourse Relation with Single Classifier and Multi-Task Network[J]. 数据分析与知识发现, 2021, 5(11): 80-88.
[2] Wu Yanwen, Cai Qiuting, Liu Zhi, Deng Yunze. Digital Resource Recommendation Based on Multi-Source Data and Scene Similarity Calculation[J]. 数据分析与知识发现, 2021, 5(11): 114-123.
[3] Li Zhenyu, Li Shuqing. Deep Collaborative Filtering Algorithm with Embedding Implicit Similarity Groups[J]. 数据分析与知识发现, 2021, 5(11): 124-134.
[4] Dong Miao, Su Zhongqi, Zhou Xiaobei, Lan Xue, Cui Zhigang, Cui Lei. Improving PubMedBERT for CID-Entity-Relation Classification Using Text-CNN[J]. 数据分析与知识发现, 2021, 5(11): 145-152.
[5] Yu Chuanming, Zhang Zhengang, Kong Lingge. Comparing Knowledge Graph Representation Models for Link Prediction[J]. 数据分析与知识发现, 2021, 5(11): 29-44.
[6] Ding Hao, Ai Wenhua, Hu Guangwei, Li Shuqing, Suo Wei. A Personalized Recommendation Model with Time Series Fluctuation of User Interest[J]. 数据分析与知识发现, 2021, 5(11): 45-58.
[7] Hua Bin, Wu Nuo, He Xin. Integrating Expert Reviews for Government Information Projects with Knowledge Fusion[J]. 数据分析与知识发现, 2021, 5(10): 124-136.
[8] Wang Yuan, Shi Kaize, Niu Zhendong. Position-Aware Stepwise Tagging Method for Triples Extraction of Entity-Relationship[J]. 数据分析与知识发现, 2021, 5(10): 71-80.
[9] Yang Chen, Chen Xiaohong, Wang Chuhan, Liu Tingting. Recommendation Strategy Based on Users’ Preferences for Fine-Grained Attributes[J]. 数据分析与知识发现, 2021, 5(10): 94-102.
[10] Dai Zhihong, Hao Xiaoling. Extracting Hypernym-Hyponym Relationship for Financial Market Applications[J]. 数据分析与知识发现, 2021, 5(10): 60-70.
[11] Wang Xuefeng, Ren Huichao, Liu Yuqin. Research on the Visualization Method of Drawing Technology Theme Map with Clusters [J]. 数据分析与知识发现, 0, (): 1-.
[12] Wang Yifan,Li Bo,Shi Hua,Miao Wei,Jiang Bin. Annotation Method for Extracting Entity Relationship from Ancient Chinese Works[J]. 数据分析与知识发现, 2021, 5(9): 63-74.
[13] Che Hongxin,Wang Tong,Wang Wei. Comparing Prediction Models for Prostate Cancer[J]. 数据分析与知识发现, 2021, 5(9): 107-114.
[14] Zhou Yang,Li Xuejun,Wang Donglei,Chen Fang,Peng Lijuan. Visualizing Knowledge Graph for Explosive Formula Design[J]. 数据分析与知识发现, 2021, 5(9): 42-53.
[15] Ma Jiangwei, Lv Xueqiang, You Xindong, Xiao Gang, Han Junmei. Extracting Relationship Among Military Domains with BERT and Relation Position Features[J]. 数据分析与知识发现, 2021, 5(8): 1-12.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938