Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (9): 26-30    DOI: 10.11925/infotech.1003-3513.2015.09.04
Current Issue | Archive | Adv Search |
Research of Chinese Chunk Parsing in Application of the Product Feature Extraction
Du Siqi1, Li Honglian1, Lv Xueqiang2
1 School of Information and Communication Engineering, Beijing Information Science and Technology University, Beijing 100101, China;
2 Beijing Key Laboratory of Internet Culture and Digital Dissemination Research, Beijing Information Science and Technology University, Beijing 100101, China
Export: BibTeX | EndNote (RIS)      

[Objective] This paper aims at the problem of product feature extraction, especially the noun phrase identification. [Methods] Chinese Chunk Parsing is used to extract the feature, and frequent sets are generated by Apriori. Then the candidate product features are filtered according to the rules of the minimum support, frequent nouns and TF-IDF. At last, the final product feature sets are obtained. [Results] In order to verify the effectiveness of the method, the car reviews are used in this paper, the average recall rate reaches 76.89%, the average precision rate reaches 84.03%. [Limitations] The recall rate is low and there is noun phrase identification error in the test. [Conclusions] Experiment results show that the method can extract product feature from Chinese reviews with good effects.

Received: 02 March 2015      Published: 06 April 2016
:  TP391  

Cite this article:

Du Siqi, Li Honglian, Lv Xueqiang. Research of Chinese Chunk Parsing in Application of the Product Feature Extraction. New Technology of Library and Information Service, 2015, 31(9): 26-30.

URL:     OR

[1] 祁志民, 刘涌. 浅谈我国电子商务的发展现状与趋势[J]. 学术交流, 2009(7): 136-138. (Qi Zhimin, Liu Yong. Introduction to the China Electronic Commerce Development Present Situa­tion and Trends [J]. Academic Exchange, 2009(7): 136-138.)
[2] 姚天昉, 聂青阳, 李建超, 等. 一个用于汉语汽车评论的意见挖掘系统[C]. 见: 中文信息处理前沿进展——中国中文信息学会二十五周年学术会议论文集. 2006. (Yao Tianfang, Nie Qingyang, Li Jianchao, et al. An Opinion Mining System for Chinese Automobile Reviews [C]. In: Proceedings of the 25th Academic Conference of Chinese Information Processing Society of China on Frontiers of Chinese Information Processing. 2006.)
[3] 娄德成, 姚天昉. 汉语句子语义极性分析和观点挖掘抽取方法的研究[J]. 计算机应用, 2006, 26(11): 2622-2625. (Lou Decheng, Yao Tianfang. Semantic Polarity Analysis and Opinion Mining on Chinese Reviews Sentence [J]. Computer Applications, 2006, 26(11): 2622-2625.)
[4] Shi B, Chang K. Mining Chinese Reviews [C]. In: Procee­dings of the 6th IEEE International Conference on Data Mining Workshops. IEEE, 2006: 585-589.
[5] Hu M, Liu B. Mining and Summarizing Customer Reviews [C]. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2004: 168-177.
[6] Popescu A M, Etzioni O. Extracting Product Features and Opinions from Reviews [A].//Natural Language Processing and Text Mining [M]. Springer London, 2005: 339-446.
[7] 伍星, 何中市, 黄永文.基于弱监督学习的产品特征抽取[J]. 计算机工程, 2009, 35(13): 199-201. (Wu Xing, He Zhongshi, Huang Yongwen. Product Feature Extraction Based on Weakly Supervised Learning [J]. Computer Enineering, 2009, 35(13): 199-201.)
[8] 李实, 叶强, 李一军, 等. 中文网络客户评论的产品特征挖掘方法研究[J]. 管理科学学报, 2009, 12(2): 142-150. (Li Shi, Ye Qiang, Li Yijun, et al. Mining Features of Product from Chinese Customer Online Reviews [J]. Journal of Management Science in China, 2009, 12(2): 142-150.)
[9] 李业刚, 黄河燕. 汉语组块分析综述[J]. 中文信息学报, 2013, 27(3): 1-8. (Li Yegang, Huang Heyan. A Survey on
Chinese Chunk Parsing [J]. Journal of Chinese Information Process, 2013, 27(3): 1-8.)
[10] 周雅倩, 郭以昆, 黄萱菁, 等.基于最大熵方法的中英文基本名词短语识别[J]. 计算机研究与发展, 2003, 40(3): 440-445. (Zhou Yaqian, Guo Yikun, Huang Xuanjing, et al. Chinese and English BaseNP Recognition Based on a Maximun Entropy Model [J]. Journal of Computer Research and Development, 2003, 40(3): 440-445.)
[11] 路永和, 李焰锋. 改进TF-IDF算法的文本特征项权值计算方法[J]. 图书情报工作, 2013, 57(3): 90-95. (Lu Yonghe, Li Yanfeng. Improvement of Text Feature Weighting Method Based on TF-IDF Algorithm [J]. Library and Information Service, 2013, 57(3): 90-95.)
[12] 覃世安, 李法运. 文本分类中TF-IDF方法的改进研究[J]. 现代图书情报技术, 2013 (10): 27-30. (Qin Shian, Li Fayun. Improved TF-IDF Method in Text Classification [J]. New Technology of Library and Information Service, 2013(10): 27-30.)

[1] Wang Hong, Shu Zhan, Gao Yinquan, Tian Wenhong. Analyzing Implicit Discourse Relation with Single Classifier and Multi-Task Network[J]. 数据分析与知识发现, 2021, 5(11): 80-88.
[2] Wu Yanwen, Cai Qiuting, Liu Zhi, Deng Yunze. Digital Resource Recommendation Based on Multi-Source Data and Scene Similarity Calculation[J]. 数据分析与知识发现, 2021, 5(11): 114-123.
[3] Li Zhenyu, Li Shuqing. Deep Collaborative Filtering Algorithm with Embedding Implicit Similarity Groups[J]. 数据分析与知识发现, 2021, 5(11): 124-134.
[4] Dong Miao, Su Zhongqi, Zhou Xiaobei, Lan Xue, Cui Zhigang, Cui Lei. Improving PubMedBERT for CID-Entity-Relation Classification Using Text-CNN[J]. 数据分析与知识发现, 2021, 5(11): 145-152.
[5] Yu Chuanming, Zhang Zhengang, Kong Lingge. Comparing Knowledge Graph Representation Models for Link Prediction[J]. 数据分析与知识发现, 2021, 5(11): 29-44.
[6] Ding Hao, Ai Wenhua, Hu Guangwei, Li Shuqing, Suo Wei. A Personalized Recommendation Model with Time Series Fluctuation of User Interest[J]. 数据分析与知识发现, 2021, 5(11): 45-58.
[7] Hua Bin, Wu Nuo, He Xin. Integrating Expert Reviews for Government Information Projects with Knowledge Fusion[J]. 数据分析与知识发现, 2021, 5(10): 124-136.
[8] Wang Yuan, Shi Kaize, Niu Zhendong. Position-Aware Stepwise Tagging Method for Triples Extraction of Entity-Relationship[J]. 数据分析与知识发现, 2021, 5(10): 71-80.
[9] Yang Chen, Chen Xiaohong, Wang Chuhan, Liu Tingting. Recommendation Strategy Based on Users’ Preferences for Fine-Grained Attributes[J]. 数据分析与知识发现, 2021, 5(10): 94-102.
[10] Dai Zhihong, Hao Xiaoling. Extracting Hypernym-Hyponym Relationship for Financial Market Applications[J]. 数据分析与知识发现, 2021, 5(10): 60-70.
[11] Wang Xuefeng, Ren Huichao, Liu Yuqin. Research on the Visualization Method of Drawing Technology Theme Map with Clusters [J]. 数据分析与知识发现, 0, (): 1-.
[12] Wang Yifan,Li Bo,Shi Hua,Miao Wei,Jiang Bin. Annotation Method for Extracting Entity Relationship from Ancient Chinese Works[J]. 数据分析与知识发现, 2021, 5(9): 63-74.
[13] Che Hongxin,Wang Tong,Wang Wei. Comparing Prediction Models for Prostate Cancer[J]. 数据分析与知识发现, 2021, 5(9): 107-114.
[14] Zhou Yang,Li Xuejun,Wang Donglei,Chen Fang,Peng Lijuan. Visualizing Knowledge Graph for Explosive Formula Design[J]. 数据分析与知识发现, 2021, 5(9): 42-53.
[15] Ma Jiangwei, Lv Xueqiang, You Xindong, Xiao Gang, Han Junmei. Extracting Relationship Among Military Domains with BERT and Relation Position Features[J]. 数据分析与知识发现, 2021, 5(8): 1-12.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938