Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (9): 52-59    DOI: 10.11925/infotech.1003-3513.2015.09.08
Current Issue | Archive | Adv Search |
Topic Sources and Trends Tracking Towards Citation Network of Single Paper
Qin Xiaohui1,2, Le Xiaoqiu1
1 National Science Library, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Export: BibTeX | EndNote (RIS)      

[Objective] To track topic sources and trends for a high-impact paper from its citation network. [Methods] Firstly, topics are detected for each paper by domain Ontology. Secondly, a citation network towards a single paper's topic is constructed. The nodes of the network are selected from second level cited papers, cited papers, citing papers and second level citing papers according to their contents. Thirdly, incremental cluster is applied for mining topic sources and trends from the network constructed before, the noisy sources or trends are filtered, and evolution paths of topics are formed. [Results] The structure changes and content changes of topic sources and trends are fully revealed. [Limitations] The screening conditions for the construction of citation network need to be further studied. Besides, completeness of the domain Ontology is not considered. [Conclusions] This study tracks topic sources and trends for single paper effectively, and helps reveal origin and development of the topics.

Received: 29 January 2015      Published: 06 April 2016
:  TP393  

Cite this article:

Qin Xiaohui, Le Xiaoqiu. Topic Sources and Trends Tracking Towards Citation Network of Single Paper. New Technology of Library and Information Service, 2015, 31(9): 52-59.

URL:     OR

[1] Web of Science [DB/OL]. [2015-01-27]. http://www.webof­
[2] 中国知网 [EB/OL]. [2015-01-27]. (China National Knowledge Infrastructure [EB/OL]. [2015-01-27].
[3] Google Scholar [DB/OL]. [2015-01-27].
[4] Rajaraman K, Tan A. Topic Detection, Tracking, and Trend Analysis Using Self-Organizing Neural Networks [C]. In: Proceedings of the 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'01). London: Springer-Verlag, 2001: 102-107.
[5] 马费成, 张勤. 国内外知识管理研究热点——基于词频的统计分析[J]. 情报学报, 2006, 25(2): 163-171. (Ma Feicheng, Zhang Qin. Comparative Analysis of Knowledge Management Literature Between China and Overseas: A Bibliometric Analysis [J]. Journal of the China Society for Scientific and Technical Information, 2006, 25(2): 163-171.)
[6] 叶春蕾, 冷伏海. 基于共词分析的学科主题演化方法改进研究[J]. 情报理论与实践, 2012, 35(3): 79-82. (Ye Chunlei, Leng Fuhai. Improved Disciplinary Theme Evolution Research Based on Co-word Analysis [J]. Information Studies: Theory & Application, 2012, 35(3): 79-82.)
[7] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation [J]. The Journal of Machine Learning Research, 2003, 3: 993-1022.
[8] 范云满, 马建霞. 利用LDA的领域新兴主题探测技术综述[J]. 现代图书情报技术, 2012(12): 58-65. (Fan Yunman, Ma Jianxia. Review on the LDA-based Techniques Detection for the Field Emerging Topic [J]. New Technology of Library and Information Service, 2012(12): 58-65.)
[9] 贺亮, 李芳. 科技文献话题演化研究[J].现代图书情报技术, 2012(4): 61-67. (He Liang, Li Fang. Topic Evolution in Scientific Literature [J]. New Technology of Library and Information Service, 2012(4): 61-67.)
[10] Morris S A, Yen G, Wu Z, et al. Time Line Visualization of Research Fronts [J]. Journal of American Society for Information Science and Technology, 2003, 54(5): 413-422.
[11] Takeda Y, Kajikawa Y. Optics: A Bibliometric Approach to Detect Emerging Research Domains and Intellectual Bases[J]. Scientometrics, 2009, 78(3): 543-558.
[12] 刘倩楠. 基于专利引文网络的技术演进路径识别研究[D]. 大连: 大连理工大学, 2010. (Liu Qiannan. Research on Identification of Technological Evolution Path Based on Patent Citation Network—Taking Ethemet Technology as an Example [D]. Dalian: Dalian University of Technology, 2010. )
[13] Kegler M C, Rigler J, Ravani M K. Using Network Analysis to Assess the Evolution of Organizations Collaboration in Response to a Major Environmental Health Threat[J]. Health Education Research, 2010, 25(3): 413-424.
[14] Chang S, Chang S, Guh W. Exploring the Technology Diffusion Trajectories and Groups of Basic Patents of Business Methods: Using the Patent Citation Network[C]. In: Proceedings of Portland International Center for Management of Engineering and Technology, Portland. IEEE, 2007: 1784-1789.
[15] 祝清松, 冷伏海. 基于引文内容分析的高被引论文主题识别研究[J]. 中国图书馆学报, 2014, 40(1): 39-49. (Zhu Qingsong, Leng Fuhai. Topic Identification of Highly Cited Papers Based on Citation Content Analysis[J]. Journal of Library Science in China, 2014, 40(1): 39-49.)
[16] 车海燕. 面向中文自然语言Web文档的自动知识抽取和知识融合[D]. 长春: 吉林大学, 2008. (Che Haiyan. Automatic Knowledge Extraction from the Chinese Natural Language Web Documents and Knowledge Consolidation [D]. Changchun: Jilin University, 2008.)
[17] Fukumoto F, Yamaji Y. Topic Tracking Based on Linguistic Features [C]. In: Proceedings of the 2nd International Joint Conference on Natural Language Processing (IJCNLP'05). Heidelberg, Berlin: Springer-Verlag, 2005: 10-21.
[18] Hsu C, Huang Y. Incremental Clustering of Mixed Data Based on Distance Hierarchy [J]. Expert Systems with Applications, 2008, 35(3): 1177-1185.
[19] National Cancer Institute [EB/OL]. [2015-01-14].
[20] Motzer R J, Michaelson M D, Redman B G, et al. Activity of SU11248, A Multitargeted Inhibitor of Vascular Endothelial Growth Factor Receptor and Platelet-derived Growth Factor Receptor, in Patients with Metastatic Renal Cell Carcinoma [J]. Journal of Clinical Oncology, 2008, 24(1): 16-24.

[1] Chen Jie,Ma Jing,Li Xiaofeng. Short-Text Classification Method with Text Features from Pre-trained Models[J]. 数据分析与知识发现, 2021, 5(9): 21-30.
[2] Li Wenna,Zhang Zhixiong. Research on Knowledge Base Error Detection Method Based on Confidence Learning[J]. 数据分析与知识发现, 2021, 5(9): 1-9.
[3] Sun Yu, Qiu Jiangnan. Research on Influence of Opinion Leaders Based on Network Analysis and Text Mining [J]. 数据分析与知识发现, 0, (): 1-.
[4] Wang Qinjie, Qin Chunxiu, Ma Xubu, Liu Huailiang, Xu Cunzhen. Recommending Scientific Literature Based on Author Preference and Heterogeneous Information Network[J]. 数据分析与知识发现, 2021, 5(8): 54-64.
[5] Li Wenna, Zhang Zhixiong. Entity Alignment Method for Different Knowledge Repositories with Joint Semantic Representation[J]. 数据分析与知识发现, 2021, 5(7): 1-9.
[6] Wang Hao, Lin Kerou, Meng Zhen, Li Xinlei. Identifying Multi-Type Entities in Legal Judgments with Text Representation and Feature Generation[J]. 数据分析与知识发现, 2021, 5(7): 10-25.
[7] Yang Hanxun, Zhou Dequn, Ma Jing, Luo Yongcong. Detecting Rumors with Uncertain Loss and Task-level Attention Mechanism[J]. 数据分析与知识发现, 2021, 5(7): 101-110.
[8] Xu Yuemei, Wang Zihou, Wu Zixin. Predicting Stock Trends with CNN-BiLSTM Based Multi-Feature Integration Model[J]. 数据分析与知识发现, 2021, 5(7): 126-138.
[9] Huang Mingxuan,Jiang Caoqing,Lu Shoudong. Expanding Queries Based on Word Embedding and Expansion Terms[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[10] Wang Xiwei,Jia Ruonan,Wei Yanan,Zhang Liu. Clustering User Groups of Public Opinion Events from Multi-dimensional Social Network[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[11] Ruan Xiaoyun,Liao Jianbin,Li Xiang,Yang Yang,Li Daifeng. Interpretable Recommendation of Reinforcement Learning Based on Talent Knowledge Graph Reasoning[J]. 数据分析与知识发现, 2021, 5(6): 36-50.
[12] Liu Tong,Liu Chen,Ni Weijian. A Semi-Supervised Sentiment Analysis Method for Chinese Based on Multi-Level Data Augmentation[J]. 数据分析与知识发现, 2021, 5(5): 51-58.
[13] Chen Wenjie,Wen Yi,Yang Ning. Fuzzy Overlapping Community Detection Algorithm Based on Node Vector Representation[J]. 数据分析与知识发现, 2021, 5(5): 41-50.
[14] Zhang Guobiao,Li Jie. Detecting Social Media Fake News with Semantic Consistency Between Multi-model Contents[J]. 数据分析与知识发现, 2021, 5(5): 21-29.
[15] Yan Qiang,Zhang Xiaoyan,Zhou Simin. Extracting Keywords Based on Sememe Similarity[J]. 数据分析与知识发现, 2021, 5(4): 80-89.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938