Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (10): 13-21    DOI: 10.11925/infotech.1003-3513.2015.10.03
Current Issue | Archive | Adv Search |
Difference Research on Keywords Tagging Behavior for Academic User Blog——A Case Study of
Zhang Yingyi1, Zhang Chengzhi1,2, Chi Xuehua1, Li Lei1
1 School of Economics & Management, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Jiangsu Key Laboratory of Data Engineering and Knowledge Service (Nanjing University), Nanjing 210093, China
Export: BibTeX | EndNote (RIS)      

[Objective] This paper aims to provide the basis for optimizing the annotation system and enrich user annotations behavior research under the network environment. [Context] Differences research on keywords tagging behavior among different groups is one of the major works in user information behavior research. [Methods] To analyze the differences types of user's annotation behavior, this paper selects keywords tagging ratio, user-generated keywords tagging ratio, user-generated keywords average number, user-generated keywords average length and user-generated keywords average reuse ratio from the perspective of the way for tagging system, keywords structure and tagging motivation. [Results] The results show that the users with different occupation, major, register time and blog published frequency have significant differences on some tagging behaviors, but the users with different gender and education have no significant differences on all the tagging behaviors. [Conclusions] Academic blog can optimize the tagging system according to the differences of different user's annotation behavior.

Received: 29 April 2015      Published: 06 April 2016
:  G203  

Cite this article:

Zhang Yingyi, Zhang Chengzhi, Chi Xuehua, Li Lei. Difference Research on Keywords Tagging Behavior for Academic User Blog——A Case Study of New Technology of Library and Information Service, 2015, 31(10): 13-21.

URL:     OR

[1] 张素芳, 张晓晓. 科研社交网络用户行为倾向的影响因素分析[J]. 国家图书馆学刊, 2014, 23(4): 36-41. (Zhang Sufang, Zhang Xiaoxiao. Empirical Study on the Influential Factors of Users Behavioral Tendencies in Scientific Social Network [J]. Journal of the National Library of China, 2014, 23(4): 36-41.)
[2] Lu C, Park J, Hu X. User Tags Versus Expert-Assigned Subject Terms: A Comparison of LibraryThing Tags and Library of Congress Subject Headings [J]. Journal of Information Science, 2010, 36(6): 763-779.
[3] 李蕾, 王冕, 章成志. 区分标签类型的社会化标签质量测评研究[J]. 图书情报工作, 2013, 57(23): 11-16. (Li Lei, Wang Mian, Zhang Chengzhi. Quality Evaluation of Social Tagging Based on the Type of Tags [J]. Library and Information Service, 2013, 57(23): 11-16.)
[4] Mirzaee V, Iverson L. Tagging: Behaviour and Motivations [J]. Proceedings of the American Society for Information Science & Technology, 2009, 46(1): 1-5.
[5] Golder S A, Huberman B A. Usage Patterns of Collaborative Tagging Systems [J]. Journal of Information Science, 2006, 32(2): 198-208.
[6] Farooq U, Kannampallil T G, Song Y, et al. Evaluating Tagging Behavior in Social Bookmarking Systems: Metrics and Design Heuristics [C]. In: Proceedings of the 2007 International ACM Conference on Supporting Group Work. 2007: 351-360.
[7] Wang X, Kumar S, Liu H. A Study of Tagging Behavior Across Social Media [C]. In: Proceedings of the 2011 SIGIR Workshop on Social Web Search and Mining, Beijing, China. 2011.
[8] Lin C S, Chen Y F. Examining Social Tagging Behaviour and the Construction of an Online Folksonomy from the Perspectives of Cultural Capital and Social Capital [J]. Journal of Information Science, 2012, 38(6): 540-557.
[9] Guyot A. Understanding Booksonomies: How and Why are Book Taggers Tagging [D]. Aberystwyth: University of Wales, 2013.
[10] Tsai L C, Hwang S L, Tang K H E. Analysis of Keyword- based Tagging Behaviors of Experts and Novices [J]. Online Information Review, 2011, 35(2): 272-290.
[11] Špiranec S, Ivanjko T. Experts vs. Novices Tagging Behavior: An Exploratory Analysis [C]. In: Proceedings of the 2nd International Conference on Integrated Information, Budapest, Hungary. 2013: 456-459.
[12] Chen Y N, Ke H R. An Analysis of Users' Behaviour Patterns in the Organisation of Information: A Case Study of CiteULike [J]. Online Information Review, 2013, 37(4): 638-656.
[13] 吴丹, 许小梅. 图书馆与图书分享网站的用户标注行为比较研究[J]. 图书情报知识, 2013(1): 85-93. (Wu Dan, Xu Xiaomei. A Comparative Study of User's Tagging Behaviors in Libraries and Book Sharing Websites [J]. Document, Information & Knowledge, 2013(1): 85-93.)
[14] 常唯. 网络环境中用户标注对数字资源利用的影响研究[D]. 北京: 中国科学院文献情报中心, 2009. (Chang Wei. A Study of Effect of User Annotation on the Use of Digital Resources on the Interact [D]. Beijing: National Science Library, Chinese Academy of Sciences, 2009.)
[15] Strohmaier M, Körner C, Kern R. Why do Users Tag? Detecting Users' Motivation for Tagging in Social Tagging Systems [C]. In: Proceedings of the 4th International AAAI Conference on Weblogs and Social Media, Washington, DC, USA. 2010.

[1] Qi Tuotuo, Bai Ruyu, Wang Tianmei. Research on Knowledge Payment Behavior Based on Information Adoption Model: Moderating Effect of Product Type [J]. 数据分析与知识发现, 0, (): 1-.
[2] Lu Quan, He Chao, Chen Jing, Tian Min, Liu Ting. A Multi-Label Classification Model with Two-Stage Transfer Learning[J]. 数据分析与知识发现, 2021, 5(7): 91-100.
[3] Chen Jun,Liang Hao,Qian Chen. Studying Investment Decisions of Rewarded Crowdfunding Users with Emotional Distance and Text Analysis[J]. 数据分析与知识发现, 2021, 5(4): 60-71.
[4] Liang Jiaming, Zhao Jie, Zheng Peng, Huang Liushen, Ye Minqi, Dong Zhenning. Framework for Computing Trust in Online Short-Rent Platform Using Feature Selection of Images and Texts[J]. 数据分析与知识发现, 2021, 5(2): 129-140.
[5] Wu Sizhu, Qian Qing, Zhou Wei, Zhong Ming, Wang Anran, Xiu Xiaolei, Gou Huan, Li Zanmei, Li Jiao, Fang An. Data Archive for Research Projects in Population Health[J]. 数据分析与知识发现, 2020, 4(12): 2-13.
[6] Huang Wei,Zhao Jiangyuan,Yan Lu. Empirical Research on Topic Drift Index for Trending Network Events[J]. 数据分析与知识发现, 2020, 4(11): 92-101.
[7] Chi Maomao,Pan Meiyu,Wang Weijun. Impacts of Cue Consistency on Shared Accommodation Bookings: Interaction Between Texts and Images[J]. 数据分析与知识发现, 2020, 4(11): 74-83.
[8] Cai Jingxuan,Wu Jiang,Wang Chengkun. Predicting Usefulness of Crowd Testing Reports with Deep Learning[J]. 数据分析与知识发现, 2020, 4(11): 102-111.
[9] Wu Sizhu, Qian Qing, Zhou Wei, Zhong Ming, Wang Anran, Xiu Xiaolei, Gou Huan, Li Zanmei, Li Jiao, Fang An. Design and Implementation of Data Archive for Data Collection from Research Projects in the Field of Population Health [J]. 数据分析与知识发现, 0, (): 1-.
[10] Wang Shuyi,Liu Sai,Ma Zheng. Microblog Image Privacy Classification with Deep Transfer Learning[J]. 数据分析与知识发现, 2020, 4(10): 80-92.
[11] Jiaming Liang, Jie Zhao, Peng Zheng, Liushen Huang, Minqi Ye, Zhenning Dong. Image and text analysis based computational framework of trust in online short-rent platform using feature selection [J]. 数据分析与知识发现, 0, (): 1-.
[12] Chi Maomao, Pan Meiyu, Wang Weijun. Research on the Impact of Clue Consistency on Purchasing Decisions of Peer-to-Peer Accommodation Platform: Interaction between Text and Image Clues [J]. 数据分析与知识发现, 0, (): 1-.
[13] Xuhui Li,Tao Yu,Ting Li,Yiwen Li,Jinguang Gu. An Evolutionary Schema for Metadata Description[J]. 数据分析与知识发现, 2020, 4(1): 76-88.
[14] Gang Li,Sijing Chen,Jin Mao,Yansong Gu. Spatio-Temporal Comparison of Microblog Trending Topics on Natural Disasters[J]. 数据分析与知识发现, 2019, 3(11): 1-15.
[15] Li He,Zhu Linlin,Yan Min,Liu Jincheng,Hong Chuang. Identifying Useful Information from Open Innovation Community[J]. 数据分析与知识发现, 2018, 2(12): 12-22.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938