Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (10): 40-49    DOI: 10.11925/infotech.1003-3513.2015.10.06
Current Issue | Archive | Adv Search |
Survey on Hashtag Mining and Its Application
Shao Jian1, Zhang Chengzhi1,2, Li Lei1
1 School of Economics & Management, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Jiangsu Key Laboratory of Data Engineering and Knowledge Service (Nanjing University), Nanjing 210093, China
Export: BibTeX | EndNote (RIS)      

[Objective] The authors analyze Hashtag research, summarize the current problems in Hashtag research. After refining the theoretical and practical significance of Hashtag research, then present further research of Hashtag. [Coverage] About 60 literatures from international conferences and journals (2007-2015) are investigated. [Methods] Survey on Hashtag mining and its application and summarize different methods on Hashtag mining. The process and different methods of Hashtag mining are analyzed. [Results] There are some problems about user Hashtag using, mining and applications. [Conclusions] Further study should be focused on theory of Hashtag, e.g. motivation of Hashtag using, and reasons that affect Hashtag using. The performance of Hashtag application should be improved by combined of the methods and technologies from different disciplines.

Received: 29 April 2015      Published: 06 April 2016
:  G350  

Cite this article:

Shao Jian, Zhang Chengzhi, Li Lei. Survey on Hashtag Mining and Its Application. New Technology of Library and Information Service, 2015, 31(10): 40-49.

URL:     OR

[1] Gupta M, Li R, Yin Z, et al. Survey on Social Tagging Techniques [J]. ACM SIGKDD Explorations Newsletter, 2010,12(1): 58-72.
[2] Hughes A L, Palen L. Twitter Adoption and Use in Mass Convergence and Emergency Events [J]. International Journal of Emergency Management, 2009, 6(3-4): 248-260.
[3] Deller R A. Twittering on: Audience Research and Participation Using Twitter [J]. Participations, 2011, 8(1): 216-245.
[4] Small T A. What the Hashtag? A Content Analysis of Canadian Politics on Twitter [J]. Information, Communication & Society, 2011, 14(6): 872-895.
[5] Dwyer N, Marsh S. What can the Hashtag# Trust Tell Us about How Users Conceptualise Trust? [C]. In: Proceedings of the 12th Annual International Conference on the Privacy, Security and Trust (PST). IEEE, 2014: 398-402.
[6] Zappavigna M. Discourse of Twitter and Social Media: How We Use Language to Create Affiliation on the Web [M]. Bloomsbury Academic, 2012.
[7] Ivanova M. Understanding Microblogging Hashtags for Learning Enhancement [J]. Form@ re-Open Journal per la Formazione in Rete, 2011, 11(74): 17-23.
[8] Messina C. Groups for Twitter; or a Proposal for Twitter Tag Channels [EB/OL]. [2015-05-01].
[9] Huang J, Thornton K M, Efthimiadis E N. Conversational Tagging in Twitter [C]. In: Proceedings of the 21st ACM Conference on Hypertext and Hypermedia. ACM, 2010: 173-178.
[10] Tsur O, Rappoport A. What's in a Hashtag?: Content Based Prediction of the Spread of Ideas in Microblogging Communities [C]. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining. ACM, 2012: 643-652.
[11] Chang H C. A New Perspective on Twitter Hashtag Use: Diffusion of Innovation Theory [C]. In: Proceedings of the 73rd ASIS&T Annual Meeting on Navigating Streams in an Information Ecosystem.2010.
[12] Kong S, Mei Q, Feng L, et al. Predicting Bursts and Popularity of Hashtags in Real-time [C]. In: Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM, 2014: 927-930.
[13] Ma Z, Sun A, Cong G. On Predicting the Popularity of Newly Emerging Hashtags in Twitter [J]. Journal of the American Society for Information Science and Technology, 2013, 64(7): 1399-1410.
[14] Ma Z, Sun A, Cong G. Will this# Hashtag be Popular Tomorrow? [C]. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2012: 1173-1174.
[15] van den Berg J A. The Story of the Hashtag (#): A Practical Theological Tracing of the Hashtag (#) Symbol on Twitter [J]. HTS Teologiese Studies/Theological Studies, 2014, 70(1): 1-6.
[16] Potts L, Seitzinger J, Jones D, et al. Tweeting Disaster: Hashtag Constructions and Collisions [C]. In: Proceedings of the 29th ACM International Conference on Design of Communication.ACM, 2011: 235-240.
[17] Dixon K. Feminist Online Identity: Analyzing the Presence of Hashtag Feminism [J]. Journal of Arts and Humanities, 2014, 3(7): 34-40.
[18] Komori L. We Shouldn't have to Smoke and Hide the Legalize Hashtag as a Platform for Collective Identity and Collective Action Framing [D]. University of Alberta, 2013.
[19] Skalbeck R V. Anatomy of a Conference Twitter Hashtag: #AALL2010 [OL]. Digital Preservation Publications. [2011-01- 07]. publications/5.
[20] Kywe S M, Lim E P, Zhu F. A Survey of Recommender Systems in Twitter [C]. In: Proceedings of the 4th International Conference on Social Informatics. Springer- Verlag, 2012: 420-433.
[21] Gimpel K, Schneider N, O'Connor B, et al. Part-of-Speech Tagging for Twitter: Annotation, Features, and Experiments [C]. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, 2011: 42-47.
[22] Mazzia A, Juett J.Suggesting Hashtags on Twitter [EB/OL]. [2015-05-01].
[23] Cui A, Zhang M, Liu Y, et al. Discover Breaking Events with Popular Hashtags in Twitter [C].In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management.ACM, 2012: 1794-1798.
[24] Zangerle E, Gassler W, Specht G. Recommending#-Tags in Twitter [C]. In: Proceedings of the Workshop on Semantic Adaptive Social Web (SASWeb 2011) CEUR Workshop.2011: 67-78.
[25] Kywe S M, Hoang T A, Lim E P, et al. On Recommending Hashtags in Twitter Networks [C]. In: Proceedings of the 4th International Conference on Social Informatics. Springer, 2012: 337-350.
[26] Zangerle E, Gassler W, Specht G. On the Impact of Text Similarity Functions on Hashtag Recommendations in Microblogging Environments [J]. Social Network Analysis and Mining, 2013, 3(4): 889-898.
[27] Li Z, Zhou D, Juan Y F, et al. Keyword Extraction for Social Snippets [C]. In: Proceedings of the 19th International Conference on World Wide Web. ACM, 2010:1143-1144.
[28] Xiao F, Noro T, Tokuda T. News-Topic Oriented Hashtag Recommendation in Twitter Based on Characteristic Co- occurrence Word Detection [C]. In: Proceedings of the 12th International Conference on Web Engineering. Springer, 2012: 16-30.
[29] Otsuka E, Wallace S A, Chiu D. Design and Evaluation of a Twitter Hashtag Recommendation System [C]. In: Proceedings of the 18th International Database Engineering & Applications Symposium. ACM, 2014: 330-333.
[30] Wang Y, Qu J, Liu J, et al. What to Tag Your Microblog: Hashtag Recommendation Based on Topic Analysis and Collaborative Filtering [C]. In: Proceedings of the 16th Asia-Pacific Web Conference on Web Technologies and Applications, Changsha, China. Springer, 2014: 610-618.
[31] Yu J, Shen Y. Evolutionary Personalized Hashtag Recommendation [C]. In: Proceedings of the 15th International Conference on Web-Age Information Management. Springer, 2014: 34-37.
[32] Tomar A, Godin F, Vandersmissen B, et al. Towards Twitter Hashtag Recommendation Using Distributed Word Representations and a Deep Feed Forward Neural Network [C]. In: Proceedings of 2014 International Conference on the Advances in Computing, Communications and Informatics. IEEE, 2014: 362-368.
[33] She J, Chen L. Tomoha: Topic Model-based Hashtag Recommendation on Twitter [C]. In: Proceedings of the 23rd International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2014: 371-372.
[34] Ma Z, Sun A, Yuan Q, et al. Tagging Your Tweets: A Probabilistic Modeling of Hashtag Annotation in Twitter [C]. In: Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. ACM, 2014: 999-1008.
[35] Zhang Q, Gong Y, Huang X, et al. Time-aware Personalized Hashtag Recommendation on Social Media [C]. In: Proceedings of the 25th International Conference on Computational Linguistics (COLING 2014), Dublin, Ireland. 2014: 203-212
[36] Ding Z, Qiu X, Zhang Q, et al. Learning Topical Translation Model for Microblog Hashtag Suggestion [C]. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence. AAAI Press, 2013: 2078-2084.
[37] Krokos E, Samet H. A Look into Twitter Hashtag Discovery and Generation[C]. In: Proceedings of the 7th ACM SIGSPATIAL International Workshop on Location-Based Social Networks, Dallas, TX, USA. 2014.
[38] Gruetze T, Yao G, Krestel R. Learning Temporal Tagging Behaviour [C]. In: Proceedings of the 5th Temporal Web Analytics Workshop at the 24th International World Wide Web Conference, Florence, Italy. ACM, 2015.
[39] Harvey M, Crestani F. Long Time, No Tweets! Time-aware Personalised Hashtag Suggestion [C]. In: Proceedings of the 37th European Conference on IR Research (ECIR 2015), Vienna, Austria. 2015: 581-592.
[40] Lu H, Lee C. The Topic-Over-Time Mixed Membership Model (TOT-MMM): A Twitter Hashtag Recommendation Model that Accommodates for Temporal Clustering Effects [J]. IEEE Intelligent Systems, 2015. (Accepted)
[41] Zangerle E, Gassler W, Specht G. Using Tag Recommen­dations to Homogenize Folksonomies in Microblogging Environments [C]. In: Proceedings of the 3rd International Conference on Social Informatics. Springer-Verlag, 2011: 113-126.
[42] Tariq A, Karim A, Gomez F, et al. Exploiting Topical Perceptions over Multi-Lingual Text for Hashtag Suggestion on Twitter [C]. In: Proceedings of the 26th International Florida Artificial Intelligence Research Society Conference. AAAI Press 2013: 474-479.
[43] Li T, Wu Y, Zhang Y. Twitter Hash Tag Prediction Algorithm [C]. In: Proceedings of the ICOMP'11-The 2011 International Conference on Internet Computing, 2011.
[44] Shin Y, Lee S J, Park J. Composition Pattern Oriented Tag Extraction from Short Documents Using a Structural Learning Method [J]. Knowledge and Information Systems, 2014, 38(2): 447-468.
[45] Vergeest L. Using N-grams and Word Embeddings for Twitter Hashtag Suggestion [D]. Holland Tilburg:Tilburg University, 2014.
[46] Wang X, Wei F, Liu X, et al. Topic Sentiment Analysis in Twitter: A Graph-based Hashtag Sentiment Classification Approach [C]. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. ACM, 2011: 1031-1040.
[47] Muntean C I, Morar G A, Moldovan D. Exploring the Meaning Behind Twitter Hashtags Through Clustering [C]. In: Proceedings of the Business Information Systems Workshops. Springer, 2012: 231-242.
[48] Feng W, Zhang C, Zhang W, et al. StreamCube: Hierarchical Spatio-temporal Hashtag Clustering for Event Exploration over the Twitter Stream [C]. In: Proceedings of the 31st IEEE International Conference on Data Engineering (ICDE), 2015.
[49] 蒋盛益, 麦智凯, 庞观松, 等. 微博信息挖掘技术研究综述[J]. 图书情报工作, 2012, 56(17): 136-142. (Jiang Shengyi, Mai Zhikai, Pang Guansong, et al. A Survey of Microblog Date Mining [J]. Library and Information Service, 2012, 56(17): 136-142.)
[50] Barbosa G A R, Silva I S, Zaki M, et al. Characterizing the Effectiveness of Twitter Hashtags to Detect and Track Online Population Sentiment [C]. In: Proceedings of the CHI'12 Extended Abstracts on Human Factors in Computing Systems.ACM, 2012: 2621-2626.
[51] Davidov D, Tsur O, Rappoport A. Enhanced Sentiment Learning Using Twitter Hashtags and Smileys [C]. In: Proceedings of the 23rd International Conference on Computational Linguistics. Association for Computational Linguistics, 2010: 241-249.
[52] Mohammad S M, Kiritchenko S. Using Hashtags to Capture Fine Emotion Categories from Tweets [J]. Computational Intelligence, 2014.DOI: 10.1111/coin.12024.
[53] Qadir A, Riloff E. Learning Emotion Indicators from Tweets: Hashtags, Hashtag Patterns, and Phrases [C]. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar. Association for Computa­tional Linguistics, 2014: 1203-1209.
[54] Hadgu A T, Garimella K, Weber I. Political Hashtag hijacking in the US [C]. In: Proceedings of the 22nd International Conference on World Wide Web Companion. International World Wide Web Conferences Steering Committee, 2013: 55-56.
[55] Glasgow K, Fink C. Hashtag Lifespan and Social Networks During the London Riots [C]. In: Proceedings of the 6th International Conference on Social Computing, Behavioral- Cultural Modeling and Prediction. Springer, 2013: 311-320.
[56] 胡长龙, 唐晋韬, 王挺. 中文微博的 Hashtag 话题相关性分析[J]. 计算机科学, 2013, 40(11A): 235-237. (Hu Changlong, Tang Jintao, Wang Ting. Topical Relevance Analysis of Hashtags in Chinese Microblogging Environment [J]. Computer Science, 2013, 40(11A): 235-237.)
[57] Ozdikis O, Senkul P, Oguztuzun H. Semantic Expansion of Hashtags for Enhanced Event Detection in Twitter [C]. In:Proceedings of the 1st International Workshop on Online Social Systems. Citeseer, 2012.
[58] 章成志, 汤丽娟. 基于多语言社会化标签聚类的潜在社会关系网络发现 [J]. 情报理论与实践, 2013, 36(9): 67-71. (Zhang Chengzhi, Tang Lijuan. Latent Social Network Detection Based on Clustering of Multilingual Social Tag [J]. Information Studies: Theory & Application, 2013, 36(9): 67-71.)
[59] 孟小峰, 李勇, 祝建华. 社会计算: 大数据时代的机遇与挑战[J]. 计算机研究与发展, 2013, 50(12): 2483-2491. (Meng Xiaofeng, Li Yong, Zhu Jianhua. Social Computing in the Era of Big Data: Opportunities and Challenges [J]. Journal of Computer Research and Development, 2013, 50(12): 2483-2491.)
[60] Wang Y, Zheng B. On Macro and Micro Exploration of Hashtag Diffusion in Twitter [C]. In: Proceedings of 2014 IEEE/ACM International Conference on the Advances in Social Networks Analysis and Mining (ASONAM). IEEE, 2014: 285-288.

[1] Li Xiao, Qu Jiansheng. Review of Application and Evolution of Meta-Analysis in Social Sciences[J]. 数据分析与知识发现, 2021, 5(11): 1-12.
[2] Han Pu, Zhang Wei, Zhang Zhanpeng, Wang Yuxin, Fang Haoyu. Sentiment Analysis of Weibo Posts on Public Health Emergency with Feature Fusion and Multi-Channel[J]. 数据分析与知识发现, 2021, 5(11): 68-79.
[3] Chen Shiji, Qiu Junping, Yu Bo. Topic Analysis of LIS Big Data Research with Overlay Mapping[J]. 数据分析与知识发现, 2021, 5(10): 51-59.
[4] Zheng Xinman, Dong Yu. Constructing Degree Lexicon for STI Policy Texts[J]. 数据分析与知识发现, 2021, 5(10): 81-93.
[5] Wang Yan, Wang Huyan, Yu Bengong. Chinese Text Classification with Feature Fusion[J]. 数据分析与知识发现, 2021, 5(10): 1-14.
[6] Fan Shaoping,Zhao Yuxuan,An Xinying,Wu Qingqiang. Classification Model for Medical Entity Relations with Convolutional Neural Network[J]. 数据分析与知识发现, 2021, 5(9): 75-84.
[7] Xu Liangchen, Guo Chonghui. Predicting Survival Rates for Gastric Cancer Based on Ensemble Learning[J]. 数据分析与知识发现, 2021, 5(8): 86-99.
[8] Xu Zengxulin, Xie Jing, Yu Qianqian. Designing New Evaluation Model for Talents[J]. 数据分析与知识发现, 2021, 5(8): 122-131.
[9] Zhang Jiandong, Chen Shiji, Xu Xiaoting, Zuo Wenge. Extracting PDF Tables Based on Word Vectors[J]. 数据分析与知识发现, 2021, 5(8): 34-44.
[10] Zhu Hou,Fang Qingyan. Quantifying and Examining Privacy Paradox of Social Media Users[J]. 数据分析与知识发现, 2021, 5(7): 111-125.
[11] Xie Hao,Mao Jin,Li Gang. Sentiment Classification of Image-Text Information with Multi-Layer Semantic Fusion[J]. 数据分析与知识发现, 2021, 5(6): 103-114.
[12] Yue Mingliang,Li Fushan,Tang Hongbo,Lv Xinhua,Ma Tingcan. Evaluating Consistency of Scholarly Article Reviewers[J]. 数据分析与知识发现, 2021, 5(4): 115-122.
[13] Zhang Xin,Wen Yi,Xu Haiyun. A Prediction Model with Network Representation Learning and Topic Model for Author Collaboration[J]. 数据分析与知识发现, 2021, 5(3): 88-100.
[14] Zhang Jinzhu, Yu Wenqian. Topic Recognition and Key-Phrase Extraction with Phrase Representation Learning[J]. 数据分析与知识发现, 2021, 5(2): 50-60.
[15] Li Danyang, Gan Mingxin. Music Recommendation Method Based on Multi-Source Information Fusion[J]. 数据分析与知识发现, 2021, 5(2): 94-105.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938