Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (10): 58-64    DOI: 10.11925/infotech.1003-3513.2015.10.08
Current Issue | Archive | Adv Search |
Spillover Effect of Internet Word of Mouth in Negative Events——Take the “Deadly Yuantong Express” Event for an Example
He Yue, Song Lingxi, Qi Liyun
Business School, Sichuan University, Chengdu 610064, China
Export: BibTeX | EndNote (RIS)      

[Objective] Study on spillover effect of Internet Word of Mouth on enterprise brand, as the basis for enterprise to take timely measures to deal with risks. [Methods] This paper uses information entropy method to build evaluation index system of spillover effect of Internet Word of Mouth, and make comparative analysis of spillover effect direction and intensity of Internet Word of Mouth based on “Deadly Yuantong Express” event on Sina Microblog. [Result] The experiment result shows that users produce strong negative emotional tendencies during the process of the entire event. The strength and direction of spillover effect of the event on competitive brands are different. The intensity of negative spillover effect is higher than the positive. The duration of negative spillover effect is longer than positive. [Limitations] There is lack of analyzing the spillover effect of Internet Word of Mouth on other related enterprises. [Conclusions] The proposed index system can be used to monitor the spillover effect direction and intensity of Internet Word of Mouth in negative event.

Received: 07 April 2015      Published: 06 April 2016
:  G202  

Cite this article:

He Yue, Song Lingxi, Qi Liyun. Spillover Effect of Internet Word of Mouth in Negative Events——Take the “Deadly Yuantong Express” Event for an Example. New Technology of Library and Information Service, 2015, 31(10): 58-64.

URL:     OR

[1] Hennig-Thurau T, Walsh G. Electronic Word of Mouth: Motives for and Consequences of Reading Customer Articulations on the Internet [J]. International Journal of Electronic Commerce, 2003, 8(2): 51-74.
[2] Ahluwalia R, Unnava H R, Burnkrant R E. The Moderating Role of Commitment on the Spillover Effect of Marketing Communications [J]. Journal of Marketing Research, 2001, 38(4): 458-470.
[3] Liu Y. Word of Mouth for Movies: Its Dynamics and Impact on Box Office Revenue [J]. Journal of Marketing, 2006, 70(3): 74-89.
[4] Chevalier J, Mayzlin D. The Effect of Word of Mouth on Sales: On-line Book Reviews [J]. Journal of Marketing Research, 2006, 43(3): 345-354.
[5] McMillan S J, Hwang J S, Lee G. Effects of Structural and Perceptual Factors on Attitudes Toward the Website [J]. Journal of Advertising Research, 2004, 43(4): 400-421.
[6] Lei J, Dawar N, Lemmink J. Negative Spillover in Brand Portfolios: Exploring the Antecedents of Asymmetric Effects [J]. Journal of Marketing, 2008, 72(3): 111-123.
[7] Dahlén M, Lange F. A Disaster is Contagious: How a Brand in Crisis Affects Other Brands [J]. Journal of Advertising Research, 2006, 46(4): 388-397.
[8] Roehm M L, Tybout A M. When will a Brand Scandal Spill over, and How Should Competitors Respond?[J] Journal of Marketing Research, 2006, 43(3): 366-373.
[9] 李念武, 岳蓉. 网络口碑可信度及其对购买行为之影响的实证研究[J]. 图书情报工作, 2009, 53(22): 133-137. (Li Nianwu, Yue Rong. An Empirical Study on Credibility of Online Word-of-Mouth and Its Effects on Consumers' Purchase Behavior [J]. Library and Information Service, 2009, 53(22): 133-137.)
[10] 赖胜强, 唐雪梅, 朱敏. 网络口碑对游客旅游目的地选择的影响研究[J].管理评论, 2011, 23(6): 68-75. (Lai Shengqiang, Tang Xuemei, Zhu Min.A Study of the EWOM Influence on Tourist Destination Choice [J]. Management Review, 2011, 23(6): 68-75.)
[11] 卢向华, 冯越. 网络口碑的价值——基于在线餐馆点评的实证研究[J]. 管理世界, 2009(7): 126-132. (Lu Xianghua, Feng Yue. The Value of Internet Word-of-Mouth——An Empirical Study Based on Online Restaurant Reviews [J]. Management World, 2009(7): 126-132.)
[12] 王晓玉. 产品危机对危机品牌竞争对手的溢出效应研究述评与展望[J]. 外国经济与管理, 2012, 34(2): 58-64. (Wang Xiaoyu. Review and Prospect: Spillover Effect of Product Crisis to Rival Brand [J]. Foreign Economics & Management, 2012, 34(2): 58-64.)
[13] 方正, 杨洋, 李蔚, 等. 产品伤害危机溢出效应的发生条件和应对策略研究——预判和应对其它品牌引发的产品伤害危机[J]. 南开管理评论, 2013, 16(6): 19-27. (Fang Zheng, Yang Yang, Li Wei, et al. Study on Occurrence Conditions and Strategies of Spillover Effect of Product Harm Crisis——Anticipation and Coping of Product Harm Crisis of Other Brands [J]. Nankai Business Review, 2013, 16(6): 19-27.)
[14] 庄爱玲, 余伟萍. 道德关联品牌负面曝光事件溢出效应实证研究——事件类型与认知需求的交互作用[J]. 商业经济与管理, 2011(10): 60-67. (Zhuang Ailing, Yu Weiping. An Empirical Research of Spillover Effects of Ethical Brand Negative Events——The Interaction of Event Types and Needs of Cognition [J]. Journal of Business Economics, 2011(10): 60-67.)
[15] 余伟萍, 杨于峰. 微博上的品牌丑闻溢出监测指标体系研究[J]. 现代图书情报技术, 2013(2): 63-69. (Yu Weiping, Yang Yufeng. Brand Scandal Spillover Monitor Index System Research Based on Micro-blog [J]. New Technology of Library and Information Service, 2013(2): 63-69.)
[16] 张玥, 朱庆华. 网络口碑传播效应研究综述[J]. 图书情报工作, 2012, 56(10): 76-80. (Zhang Yue, Zhu Qinghua. A Review on the Effectiveness of Interner Word-of-Mouth Communication [J]. Library and Information Service, 2012, 56(10): 76-80.)
[17] 奉国和, 郑伟. 国内中文自动分词技术研究综述[J]. 图书情报工作, 2011, 55(2): 41-45. (Feng Guohe, Zheng Wei. Review of Chinese Automatic Word Segmentation [J]. Library and Information Service, 2011, 55(2): 41-45.)
[18] 王巍, 杨武, 齐海凤. 基于多中心模型的网络热点话题发现算法[J]. 南京理工大学学报: 自然科学版, 2009, 33(4): 421-431. (Wang Wei, Yang Wu, Qi Haifeng. Network Hotspot Topic Detection Algorithm Based on Multi-center Model [J]. Journal of Nanjing University of Science and Technology: Natural Science, 2009, 33(4): 421-431.)
[19] 何跃, 邓唯茹, 张丹. 中文微博的情绪识别与分类研究[J].情报杂志, 2014, 33(2): 136-139, 85. (He Yue, Deng Weiru, Zhang Dan. Study on Sentiments Recognition and Classification of Chinese Micro-blog [J]. Journal of Intelligence, 2014, 33(2): 136-139, 85.)
[20] Pang B, Lee L, Vaithyanathan S. Thumbs up? Sentiment Classification Using Machine Learning Techniques [C]. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing. 2002.张国海, 马晓英, 刘秀梅. 高校图书馆网站的熵权模糊综合评判[J]. 情报杂志, 2007, 26(2): 121-122, 125. (Zhang Guohai, Ma Xiaoying, Liu Xiumei. Entropy Weight Fuzzy Compr­e­hensive Evaluation to Website of the University Library [J]. Journal of Intelligence, 2007, 26(2): 121-122, 125.)

[1] Fan Tao,Wang Hao,Wu Peng. Sentiment Analysis of Online Users' Negative Emotions Based on Graph Convolutional Network and Dependency Parsing[J]. 数据分析与知识发现, 2021, 5(9): 97-106.
[2] Zhou Zeyu,Wang Hao,Zhao Zibo,Li Yueyan,Zhang Xiaoqin. Construction and Application of GCN Model for Text Classification with Associated Information[J]. 数据分析与知识发现, 2021, 5(9): 31-41.
[3] Feng Yong,Liu Yang,Xu Hongyan,Wang Rongbing,Zhang Yonggang. Recommendation Model Incorporating Neighbor Reviews for GRU Products[J]. 数据分析与知识发现, 2021, 5(3): 78-87.
[4] Wu Jinming,Hou Yuefang,Cui Lei. Automatic Expression of Co-occurrence Clustering Based on Indexing Rules of Medical Subject Headings[J]. 数据分析与知识发现, 2020, 4(9): 133-144.
[5] Zhao Yang, Zhang Zhixiong, Liu Huan, Ding Liangping. Classification of Chinese Medical Literature with BERT Model[J]. 数据分析与知识发现, 2020, 4(8): 41-49.
[6] Zhixiong Zhang,Huan Liu,Liangping Ding,Pengmin Wu,Gaihong Yu. Identifying Moves of Research Abstracts with Deep Learning Methods[J]. 数据分析与知识发现, 2019, 3(12): 1-9.
[7] Yan Yu,Lei Chen,Jinde Jiang,Naixuan Zhao. Measuring Patent Similarity with Word Embedding and Statistical Features[J]. 数据分析与知识发现, 2019, 3(9): 53-59.
[8] Xiong Huixiang,Ye Jiaxin,Jiang Wuxuan. Clustering Social Tags with Improved DBSCAN Algorithm[J]. 数据分析与知识发现, 2018, 2(12): 77-88.
[9] He Weilin,Feng Guohe,Xie Hongling. Analyzing Scientific Literature with Content Similarity - Topics over Time Model[J]. 数据分析与知识发现, 2018, 2(11): 64-72.
[10] Yin Cong,Zhang Liyi. Recommendation Algorithm for Post-Context Filtering Based on TF-IDF: Case Study of Catering O2O[J]. 数据分析与知识发现, 2018, 2(11): 28-36.
[11] Hu Jiaheng,Cen Yonghua,Wu Chengyao. Constructing Sentiment Dictionary with Deep Learning: Case Study of Financial Data[J]. 数据分析与知识发现, 2018, 2(10): 95-102.
[12] Xu Jianmin,Xu Caiyun. Computing Similarity of Sci-Tech Documents Based on Texts and Formulas[J]. 数据分析与知识发现, 2018, 2(10): 103-109.
[13] Zhang Yanfeng,Li He,Peng Lihui,Hou Litie. Identifying Useful Online Reviews with Semantic Feature Extraction[J]. 数据分析与知识发现, 2017, 1(12): 74-83.
[14] Wei Xing,Hu Dehua,Yi Minhan,Zhu Qizhen,Zhu Wenjie. Extracting Disease-Gene-Drug Correlations Based on Data Cube[J]. 数据分析与知识发现, 2017, 1(10): 94-104.
[15] Wang Zhongqun,Wu Dongsheng,Jiang Sheng,Huang Subin. Ranking Credibility of Online Product Reviews Based on Feature-Opinion Pair[J]. 数据分析与知识发现, 2017, 1(10): 32-42.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938