Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (10): 95-101    DOI: 10.11925/infotech.1003-3513.2015.10.13
Current Issue | Archive | Adv Search |
The Design and Implementation of Open Engine System for Scientific & Technological Knowledge Organization Systems
Wang Ying1, Zhang Zhixiong1, Li Chuanxi2, Liu Yi3, Tang Yijie3, Zhou Zijian3, Qian Li1,4, Fu Honghu1
1 National Science Library, Chinese Academy of Sciences, Beijing 100190, China;
2 China Great Wall Asset Management Corporation, Beijing 100045, China;
3 Wuhan Library, Chinese Academy of Sciences, Wuhan 430071, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China
Export: BibTeX | EndNote (RIS)      

[Objective] This paper aims to realize the sharing and utilization of the Scientific & Technological Knowledge Organization System(STKOS). [Context] An effective storage and access engine system is the prerequisite for knowledge organization system to realize its utilization. [Methods] The open engine system for STKOS is designed and implemented, which includes the semantic storage and index system, the semantic query and reasoning kernel, STKOS APIs for search, browse, association and navigation of STKOS elements, and the open query and reasoning interface for external applications. [Results] This engine system is used for the constructions of the STKOS publishing service platform and a third-party retrieval system based on STKOS. [Conclusions] The open STKOS engine system can bring convenience for science and technology literature information agencies and researchers to use STKOS.

Received: 27 April 2015      Published: 06 April 2016
:  TP393  

Cite this article:

Wang Ying, Zhang Zhixiong, Li Chuanxi, Liu Yi, Tang Yijie, Zhou Zijian, Qian Li, Fu Honghu. The Design and Implementation of Open Engine System for Scientific & Technological Knowledge Organization Systems. New Technology of Library and Information Service, 2015, 31(10): 95-101.

URL:     OR

[1] 孙坦, 刘峥. 面向外文科技文献信息的知识组织体系建设思路[J]. 图书与情报, 2013(1): 2-7. (Sun Tan, Liu Zheng. Methodology Framework of Knowledge Organization System for Scientific & Technological Literature [J]. Library & Information, 2013(1): 2-7.)
[2] UMLS Database Query Diagrams [EB/OL]. [2014-03-20].
[3] MetamorphoSys Help [EB/OL]. [2014-03-20]. http://www.
[4] NCI Enterprise Vocabulary Services [EB/OL]. [2015-03-24].
[5] LexEVS 6.x Architecture [EB/OL]. [2012-05-20].
[6] Vizine-Goetz D. Terminology Services [EB/OL]. [2013- 06-08].
[7] Caracciolo C, Stellato A, Morshed A, et al. The AGROVOC Linked Dataset [J]. Semantic Web, 2013, 4(3): 341-348.
[8] 张运良, 徐硕, 朱礼军, 等. 汉语科技词系统——一种可用于科技信息资源深度内容分析的语义资源[J]. 图书情报工作, 2010, 55(4): 100-105. (Zhang Yunliang, Xu Shuo, Zhu Lijun, et al. Chinese Scientific and Technical Vocabulary Systems—Semantic Resource for Deep Content Analysis S&T Information Resources [J]. Library and Information Service, 2010, 55(4): 100-105.)
[9] 史新, 乔晓东, 张志平, 等. 汉语科技词系统的Web服务研究与实现[J]. 现代图书情报技术, 2008(12): 37-42. (Shi Xin, Qiao Xiaodong, Zhang Zhiping, et al. Research and Implementation of the Web Service of Chinese Technological Vocabulary System [J]. New Technology of Library and Information Service, 2008 (12): 37-42.)
[10] 欧石燕. 国外术语注册与术语服务综述[J]. 中国图书馆学
报, 2014, 40(5): 110-126. (Ou Shiyan. A Review of Foreign Terminology Registries and Terminology Services [J]. Journal of Library Science in China, 2014, 40(5): 110-126.)
[11] 邹益民, 张智雄, 钱力, 等. 语义仓储构建技术研究进展[J]. 情报学报, 2013, 32(1): 13-21. (Zou Yimin, Zhang Zhixiong, Qian Li, et al. Technical Analysis and Application of Semantic Repository-Virtuoso [J]. Journal of the China Society for Scientific and Technical Information, 2013, 32(1): 13-21.)
[12] 刘毅, 汤怡洁, 周子健, 等. 科技知识组织体系共享服务平台服务接口建设研究[J]. 现代图书情报技术, 2014(7-8): 9-16. (Liu Yi, Tang Yijie, Zhou Zijian, et al. Research and Construct of the Service Interface in STKOS Sharing Infrastructure [J]. New Technology of Library and Information Service, 2014(7-8): 9-16.)

[1] Chen Jie,Ma Jing,Li Xiaofeng. Short-Text Classification Method with Text Features from Pre-trained Models[J]. 数据分析与知识发现, 2021, 5(9): 21-30.
[2] Li Wenna,Zhang Zhixiong. Research on Knowledge Base Error Detection Method Based on Confidence Learning[J]. 数据分析与知识发现, 2021, 5(9): 1-9.
[3] Sun Yu, Qiu Jiangnan. Research on Influence of Opinion Leaders Based on Network Analysis and Text Mining [J]. 数据分析与知识发现, 0, (): 1-.
[4] Wang Qinjie, Qin Chunxiu, Ma Xubu, Liu Huailiang, Xu Cunzhen. Recommending Scientific Literature Based on Author Preference and Heterogeneous Information Network[J]. 数据分析与知识发现, 2021, 5(8): 54-64.
[5] Li Wenna, Zhang Zhixiong. Entity Alignment Method for Different Knowledge Repositories with Joint Semantic Representation[J]. 数据分析与知识发现, 2021, 5(7): 1-9.
[6] Wang Hao, Lin Kerou, Meng Zhen, Li Xinlei. Identifying Multi-Type Entities in Legal Judgments with Text Representation and Feature Generation[J]. 数据分析与知识发现, 2021, 5(7): 10-25.
[7] Yang Hanxun, Zhou Dequn, Ma Jing, Luo Yongcong. Detecting Rumors with Uncertain Loss and Task-level Attention Mechanism[J]. 数据分析与知识发现, 2021, 5(7): 101-110.
[8] Xu Yuemei, Wang Zihou, Wu Zixin. Predicting Stock Trends with CNN-BiLSTM Based Multi-Feature Integration Model[J]. 数据分析与知识发现, 2021, 5(7): 126-138.
[9] Huang Mingxuan,Jiang Caoqing,Lu Shoudong. Expanding Queries Based on Word Embedding and Expansion Terms[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[10] Wang Xiwei,Jia Ruonan,Wei Yanan,Zhang Liu. Clustering User Groups of Public Opinion Events from Multi-dimensional Social Network[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[11] Ruan Xiaoyun,Liao Jianbin,Li Xiang,Yang Yang,Li Daifeng. Interpretable Recommendation of Reinforcement Learning Based on Talent Knowledge Graph Reasoning[J]. 数据分析与知识发现, 2021, 5(6): 36-50.
[12] Liu Tong,Liu Chen,Ni Weijian. A Semi-Supervised Sentiment Analysis Method for Chinese Based on Multi-Level Data Augmentation[J]. 数据分析与知识发现, 2021, 5(5): 51-58.
[13] Chen Wenjie,Wen Yi,Yang Ning. Fuzzy Overlapping Community Detection Algorithm Based on Node Vector Representation[J]. 数据分析与知识发现, 2021, 5(5): 41-50.
[14] Zhang Guobiao,Li Jie. Detecting Social Media Fake News with Semantic Consistency Between Multi-model Contents[J]. 数据分析与知识发现, 2021, 5(5): 21-29.
[15] Yan Qiang,Zhang Xiaoyan,Zhou Simin. Extracting Keywords Based on Sememe Similarity[J]. 数据分析与知识发现, 2021, 5(4): 80-89.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938