Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (12): 3-12    DOI: 10.11925/infotech.1003-3513.2015.12.02
Current Issue | Archive | Adv Search |
Review on the Scientific Metadata Standards and Research on Its Generic Design
Liu Feng1,2,3, Zhang Xiaolin1
1 National Science Library, Chinese Academy of Sciences, Beijing 100190, China;
2 Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Export: BibTeX | EndNote (RIS)      

[Objective] Conduct a comprehensive analysis of scientific metadata standards and build a common metadata standards design model. [Methods] Make an overview and analysis of six typical metadata standards in different research fields and design common metadata standards of scientific data based on statistics. [Results] There are many obvious differences in format, organization, expression of metadata standards of different research fields, but there are also some similarities in its elements. [Conclusions] Discipline-oriented metadata standards of scientific data promote the development of scientific research, but also pose a challenge to the unified management and service of scientific data. Based on the statistics of metadata standards elements in different research fields and build a common metadata specification is an idea to solve this problem.

Received: 07 September 2015      Published: 06 April 2016
:  G250  

Cite this article:

Liu Feng, Zhang Xiaolin. Review on the Scientific Metadata Standards and Research on Its Generic Design. New Technology of Library and Information Service, 2015, 31(12): 3-12.

URL:     OR

[1] Bagley P R. Extension of Programming Language Concepts [R]. Philadelphia PA: University City Science Center, 1968.
[2] Ahronheim J R. Descriptive Metadata: Emerging Standards [J]. Journal of Academic Librarianship, 1998, 24(5): 395-403.
[3] Coyle K. Understanding Metadata and Its Purpose [J]. Journal of Academic Librarianship, 2005, 31(2): 160-163.
[4] Press N. Understanding Metadata [R/OL]. National Information Standards Organization, 2004. [2015-06-13]. http://www.niso. org/publica­tions/press/UnderstandingMetadata.pdf.
[5] Gill T, Gilliland A J, Whalen M, et al. Introduction to Metadata [M]. Getty Research Institute, 2008.
[6] Metadata [EB/OL]. [2015-06-13]. Metadata/.
[7] Bretherton F P, Singley P T. Metadata: A User's View [C]. In: Proceedings of the 7th International Working Conference on Scientific and Statistical Database Management. IEEE, 1994: 166-174.
[8] Metadata Encoding & Transmission Standard (METS) [EB/OL]. [2015-06-13].
[9] Day M. DCC Digital Curation Manual: Instalment on Metadata [EB/OL]. [2015-06-13]. default/files/documents/resource/curation-manual/chapters/ metadata/metadata.pdf.
[10] Diederich J, Milton J. Creating Domain Specific Metadata for Scientific Data and Knowledge Bases [J]. IEEE Transactions on Knowledge and Data Engineering, 1991, 3(4): 421-434.
[11] Metadata Standards [EB/OL]. [2013-06-13]. http://www.dcc.
[12] Directory Interchange Format (DIF) Writer's Guide [EB/OL]. [2015-06-13]. html.
[13] Olsen L. Directory Interchange Format (DIF): Writer's Guide [EB/OL]. [2015-06-13]. whatisadif.html.
[14] Darwin Core [EB/OL]. [2015-06-13]. index.htm.
[15] Simple Darwin Core [EB/OL]. [2015-06-13]. http://rs.tdwg. org/dwc/terms/simple/index.htm.
[16] Dublin Core [EB/OL]. [2013-06-13].
[17] TDWG [EB/OL]. [2015-06-13].
[18] Darwin Core Terms [EB/OL]. [2015-06-13]. http://rs.tdwg. org/dwc/terms/.
[19] Darwin Core [EB/OL]. [2015-06-13]. wiki/Darwin_Core.
[20] DDI [EB/OL]. [2015-06-13].
[21] DDI-Community [EB/OL]. [2015-06-13]. http://www.ddial­
[22] Thomas W, Gregory A, Gager J, et al. User Guide for DDI Version 3.2 [EB/OL]. [2015-06-13]. http://www.ddialliance. org/Specification/DDI-Lifecycle/3.2/XMLSchema/HighLevelDocumentation/DDI_Part_II_UserGuide.pdf.
[23] TEI: Text Encoding [EB/OL]. [2015-06-13]. http://www.
[24] About the TEI [EB/OL]. [2015-06-13]. About.
[25] ISO/TC 211 [EB/OL]. [2015-06-13].
[26] ISO 19115: 2003, Geographic Information Metadata [S].
[27] Content Standard for Digital Geospatial Metadata--Federal Geographic Data Committee [EB/OL]. [2015-06-13]. http://
[28] FGDC [EB/OL]. [2015-06-13].
[29] FGDC-STD-001-1998. Content Standard for Digital Geospatial Metadata [S]. Washington, DC: Metadata Ad Hoc Working Group Federal Geographic Data Committee, 1998. [2015-06- 13]. projects/metadata/base-metadata/v2_0698.pdf.
[30] Ball A. Scientific Data Application Profile Scoping Study Report [R/OL]. [2015-06-13]. sdapss/papers/ball2009sda-v11.pdf.
[31] Farnel S, Shiri A. Metadata for Research Data: Current Practices and Trends [C]. In: Proceedings of the 2014 International Conference on Dublin Core and Metadata Applications, Austin, Texas, USA. 2014: 74-82

[1] Chai Qingfeng, Shi Linyan, Mei Shan, Xiong Haitao, He Huixin. Extracting Knowledge Elements of Sci-Tech Literature Based on Artificial and Machine Features[J]. 数据分析与知识发现, 2021, 5(8): 132-144.
[2] Tan Ying, Tang Yifei. Extracting Citation Contents with Coreference Resolution[J]. 数据分析与知识发现, 2021, 5(8): 25-33.
[3] Wang Qinjie, Qin Chunxiu, Ma Xubu, Liu Huailiang, Xu Cunzhen. Recommending Scientific Literature Based on Author Preference and Heterogeneous Information Network[J]. 数据分析与知识发现, 2021, 5(8): 54-64.
[4] Han Pu,Zhang Zhanpeng,Zhang Mingtao,Gu Liang. Normalizing Chinese Disease Names with Multi-feature Fusion[J]. 数据分析与知识发现, 2021, 5(5): 83-94.
[5] Li He,Liu Jiayu,Li Shiyu,Wu Di,Jin Shuaiqi. Optimizing Automatic Question Answering System Based on Disease Knowledge Graph[J]. 数据分析与知识发现, 2021, 5(5): 115-126.
[6] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[7] Yi Huifang,Liu Xiwen. Analyzing Patent Technology Topics with IPC Context-Enhanced Context-LDA Model[J]. 数据分析与知识发现, 2021, 5(4): 25-36.
[8] Wang Hongbin,Wang Jianxiong,Zhang Yafei,Yang Heng. Topic Recognition of News Reports with Imbalanced Contents[J]. 数据分析与知识发现, 2021, 5(3): 109-120.
[9] Chang Zhijun,Qian Li,Xie Jing,Wu Zhenxin,Zhang Hu,Yu Qianqian,Wang Ying,Wang Yongji. Big Data Platform for Sci-Tech Literature Based on Distributed Technology[J]. 数据分析与知识发现, 2021, 5(3): 69-77.
[10] Hu Shaohu,Zhang Yingyi,Zhang Chengzhi. Review of Keyword Extraction Studies[J]. 数据分析与知识发现, 2021, 5(3): 45-59.
[11] Liu Tong, Liu Chen, Ni Weijian. A semi-supervised Chinese sentiment analysis method based on multi-level data augmentation [J]. 数据分析与知识发现, 0, (): 1-.
[12] Wang Hongbin, Wang Jianxiong, Zhang Yafei, Yang Heng. Topic Recognition Research on Topic Imbalanced News Text Data Set [J]. 数据分析与知识发现, 0, (): 1-.
[13] Sifan Zhang, Zhendong Niu, Hao Lu, Yifan Zhu, Rongrong Wang. Graph Convolution Embedding and Feature Cross Based Literature Citation Prediction Method:Taking the Transportation Field as An Example [J]. 数据分析与知识发现, 0, (): 1-.
[14] Qi Ruihua, Jian Yue, Guo Xu, Guan Jinghua, Yang Mingxi. Sentiment Analysis of Cross-Domain Product Reviews Based on Feature Fusion and Attention Mechanism [J]. 数据分析与知识发现, 0, (): 1-.
[15] Li Jiao, Huang Yongwen, Luo Tingting, Zhao Ruixue, Xian Guojian. Automatic Classification based on Multi-factor Algorithm [J]. 数据分析与知识发现, 0, (): 1-.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938