Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (12): 72-79    DOI: 10.11925/infotech.1003-3513.2015.12.11
Current Issue | Archive | Adv Search |
Research on Construction of Chinese Plant Species Diversity Domain Ontology Based on BFO
Duan Yufeng, Huang Sisi
Business School, East China Normal University, Shanghai 200241, China
Export: BibTeX | EndNote (RIS)      

[Objective] Establish Chinese Plant Species Diversity Domain Ontology. [Methods] With BFO as the upper Ontology, this paper takes KACTUS method as a reference to build the Chinese Plant Species Diversity Domain Ontology by reusing PO. The specific process includes cutting and consolidation of PO, increase of entities, accretion of relations, Chinese localization of terminology and filling of instances. [Results] This paper establishes a Chinese Plant Species Diversity Domain Ontology which includes 720 entities and more than 4 000 instances. Furthermore, some knowledge fragments on description of Feronia Limonia from “Flora of China” are expressed based on the Ontology using OWL. [Limitations] The Ontology does not exhaust instances due to the lack of a perfect field dictionary. [Conclusions] The Chinese Plant Species Diversity Domain Ontology can support the formal representation of knowledge on plant species diversity.

Received: 10 June 2015      Published: 06 April 2016
:  G350  

Cite this article:

Duan Yufeng, Huang Sisi. Research on Construction of Chinese Plant Species Diversity Domain Ontology Based on BFO. New Technology of Library and Information Service, 2015, 31(12): 72-79.

URL:     OR

[1] Manyika J, Chui M, Brown B, et al. Big Data: The Next Frontier for Innovation, Competition, and Productivity [R]. USA: McKinsey Global Institute, 2011.
[2] 丁晟春, 李岳盟, 甘利人. 基于顶层本体的领域本体综合构建方法研究[J]. 情报理论与实践, 2007, 30(2): 236-240. (Ding Shengchun, Li Yuemeng, Gan Liren. Research on Integrated Construction Method of Field Ontology Based on Top-level Ontology [J]. Information Studies: Theory & Application, 2007, 30(2): 236-240.)
[3] 王红, 丁媛, 张剑. SUMO——顶级本体的介绍与启示[J]. 图书馆理论与实践, 2007, (3): 96-98. (Wang Hong, Ding Yuan, Zhang Jian. SUMO——The Introduction and Revelation of Top Ontology [J]. Library Theory and Practice, 2007, (3): 96-98.)
[4] Brochhausen M, Hastings J, Overton J, et al. Basic Formal Ontology (BFO) [EB/OL]. [2015-03-09]. http://ifomis.uni-
[5] Smith B, Ceusters W, Mulligan K. Mental-Functioning- Ontology [EB/OL]. [2015-03-09]. mental-functioning-ontology/.
[6] Panov P. The OntoDM Ontology [EB/OL]. [2015-03-09].
[7] BioAssay Ontology [EB/OL]. [2015-03-09]. http://bioassay­
[8] Search or Browse the Plant Ontology Database [EB/OL]. [2015-03-09].
[9] Institute for Formal Ontology and Medical Information Science (IFOMIS). Ontology for the Twenty First Century: An Introduction with Recommendations [EB/OL]. [2015-03-09].
[10] 岳天祥. 生物多样性研究及其问题[J]. 生态学报, 2001, 21(3): 462-467. (Yue Tianxiang. Studies and Questions of Biological Diversity [J]. Acta Ecologica Sinica, 2001, 21(3): 462-467.)
[11] 李智琦, 欧阳志云, 曾慧卿. 基于物种的大尺度生物多样性热点研究方法[J]. 生态学报, 2010, 30(6): 1586-1593. (Li Zhiqi, Ouyang Zhiyun, Zeng Huiqing. Assessment Methods for Territorial Biodiversity Hotspot Based on Species Richness at Broad Scale [J]. Acta Ecologica Sinica, 2010, 30(6): 1586-1593.)
[12] 周红章. 物种与物种多样性[J]. 生物多样性, 2000, 8(2): 215-226. (Zhou Hongzhang. Species and Species Diversity [J]. Chinese Biodiversity, 2000, 8(2): 215-226.)
[13] 中国植物志[EB/OL]. [2015-03-09]. (Flora Republicae Popularis Sinicae [EB/OL]. [2015-03-09].
[14] 杜文华. 本体构建方法比较研究[J]. 情报杂志, 2005, 24(10): 24-25. (Du Wenhua. A Comparative Study of Ontology Construction Method [J]. Journal of Information, 2005, 24(10): 24-25.)
[15] Schreiber A T. Wielinga B J, Jansweijer W H J. The Kactus View on the ‘O' Word [C]. In: Proceedings of the 7th Dutch National Conference on Artificial Intelligence, 1995,
[16] 刘卓燕. 化学化工文献本体的构建与实现研究[D]. 上海: 上海交通大学, 2008. (Liu Zhuoyan. Research of Chemical Literature Ontology Construction and Realization [D]. Shanghai: Shanghai Jiaotong University, 2008.)
[17] 段宇锋, 朱雯晶, 陈巧, 等. 条件随机场与领域本体元素集相结合的未登录词识别研究[J]. 现代图书情报技术, 2015(4): 41-49. (Duan Yufeng, Zhu Wenjing, Chen Qiao, et al. The Study on Out-of-Vocabulary Identification on a Model Based on the Com­bination of CRFs and Domain Ontology Elements Set [J]. New Technology of Library and Information Service, 2015(4): 41-49.)

[1] Li Xiao, Qu Jiansheng. Review of Application and Evolution of Meta-Analysis in Social Sciences[J]. 数据分析与知识发现, 2021, 5(11): 1-12.
[2] Han Pu, Zhang Wei, Zhang Zhanpeng, Wang Yuxin, Fang Haoyu. Sentiment Analysis of Weibo Posts on Public Health Emergency with Feature Fusion and Multi-Channel[J]. 数据分析与知识发现, 2021, 5(11): 68-79.
[3] Chen Shiji, Qiu Junping, Yu Bo. Topic Analysis of LIS Big Data Research with Overlay Mapping[J]. 数据分析与知识发现, 2021, 5(10): 51-59.
[4] Zheng Xinman, Dong Yu. Constructing Degree Lexicon for STI Policy Texts[J]. 数据分析与知识发现, 2021, 5(10): 81-93.
[5] Wang Yan, Wang Huyan, Yu Bengong. Chinese Text Classification with Feature Fusion[J]. 数据分析与知识发现, 2021, 5(10): 1-14.
[6] Fan Shaoping,Zhao Yuxuan,An Xinying,Wu Qingqiang. Classification Model for Medical Entity Relations with Convolutional Neural Network[J]. 数据分析与知识发现, 2021, 5(9): 75-84.
[7] Xu Liangchen, Guo Chonghui. Predicting Survival Rates for Gastric Cancer Based on Ensemble Learning[J]. 数据分析与知识发现, 2021, 5(8): 86-99.
[8] Xu Zengxulin, Xie Jing, Yu Qianqian. Designing New Evaluation Model for Talents[J]. 数据分析与知识发现, 2021, 5(8): 122-131.
[9] Zhang Jiandong, Chen Shiji, Xu Xiaoting, Zuo Wenge. Extracting PDF Tables Based on Word Vectors[J]. 数据分析与知识发现, 2021, 5(8): 34-44.
[10] Zhu Hou,Fang Qingyan. Quantifying and Examining Privacy Paradox of Social Media Users[J]. 数据分析与知识发现, 2021, 5(7): 111-125.
[11] Xie Hao,Mao Jin,Li Gang. Sentiment Classification of Image-Text Information with Multi-Layer Semantic Fusion[J]. 数据分析与知识发现, 2021, 5(6): 103-114.
[12] Yue Mingliang,Li Fushan,Tang Hongbo,Lv Xinhua,Ma Tingcan. Evaluating Consistency of Scholarly Article Reviewers[J]. 数据分析与知识发现, 2021, 5(4): 115-122.
[13] Zhang Xin,Wen Yi,Xu Haiyun. A Prediction Model with Network Representation Learning and Topic Model for Author Collaboration[J]. 数据分析与知识发现, 2021, 5(3): 88-100.
[14] Zhang Jinzhu, Yu Wenqian. Topic Recognition and Key-Phrase Extraction with Phrase Representation Learning[J]. 数据分析与知识发现, 2021, 5(2): 50-60.
[15] Li Danyang, Gan Mingxin. Music Recommendation Method Based on Multi-Source Information Fusion[J]. 数据分析与知识发现, 2021, 5(2): 94-105.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938