Please wait a minute...
New Technology of Library and Information Service  2016, Vol. 32 Issue (1): 55-64    DOI: 10.11925/infotech.1003-3513.2016.01.09
Orginal Article Current Issue | Archive | Adv Search |
Link Prediction Analysis of Internet Public Opinion Transfer from the Individual Perspective
Jing Wei1(),Hengmin Zhu1,Ruixiao Song2,Shibing Jiang3
1 School of Management, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
2College of Economic and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
3Department of Management, Brock University, St. Catharines L2S 3A1, Canada
Export: BibTeX | EndNote (RIS)      

[Objective] This paper establishes the BA network model of public opinion transfer process, regarding “Bandwagon Effect” and “Threshold Effect” as a starting point and according to the special inspection of public opinion. [Methods] At the same time, collect the real online data of public opinion transfer network. This paper uses the link prediction method to predict the unknown links of public opinion nodes which will appear in the forthcoming transfer process of both simulation BA network data and real public opinion data. [Resualts]The analysis results show that among many similarity indices algorithms LP link prediction algorithm can get the best prediction. It means that LP link prediction algorithm is suitable for the link prediction in such public opinion delivery network. [Limitations] There is no improvement of link predict similarity index. [Conclutions] From the point of data view, this paper proposes an effective prediction method of public opinion trends analysis to provide the theoretical support for the network of public opinion control.

Key wordsLink prediction      Individual of public opinion transfer      BA network      BBS network     
Received: 17 July 2015      Published: 04 February 2016

Cite this article:

Jing Wei,Hengmin Zhu,Ruixiao Song,Shibing Jiang. Link Prediction Analysis of Internet Public Opinion Transfer from the Individual Perspective. New Technology of Library and Information Service, 2016, 32(1): 55-64.

URL:     OR

[1] 吴绍忠, 李淑华.互联网络舆情预警机制研究[J]. 中国人民公安大学学报: 自然科学版, 2008, 14(3): 38-42.
[1] (Wu Shaozhong, Li Shuhua.Research on Early Warning Mechanism for Online Public Opinion[J]. Journal of the People’s Public Security University: Natural Science Edition, 2008, 14(3): 38-42.)
[2] 兰月新, 董希琳, 陈成鑫. 地方政府应对网络舆情能力评估和危机预警研究[J]. 现代情报, 2012, 32(5): 8-12.
[2] (Lan Yuexin, Dong Xilin, Chen Chengxin.Research on Local Governments to Deal with Network of Public Opinion Crisis Warning[J]. Journal of Modern Information, 2012, 32(5): 8-12.)
[3] 陈忆金, 曹树金, 陈少驰, 等. 网络舆情信息监测研究进展[J]. 图书情报知识, 2011(6): 41-49.
[3] (Chen Yijin, Cao Shujin, Chen Shaochi, et al.Survey on Online Public Opinion Information Monitoring[J]. Document, Information & Knowledge, 2011(6): 41-49.)
[4] 梁娜. 基于ANN-泊松模型的预测研究[J]. 咸宁学院学报, 2008, 28(6): 22-24.
[4] (Liang Na.Research on Prediction Based on ANN-Poisson Model[J]. Hournal of Xianning University, 2008, 28(6): 22-24.)
[5] 尹清波, 张汝波, 李雪耀, 等.基于线性预测与马尔可夫模型的入侵检测技术研究[J].计算机学报, 2005, 28(5): 900-907.
[5] (Yin Qingbo, Zhang Rubo, Li Xueyao, et al.Research on Technology of Intrusion Detection Based on Linear Prediction and Markov Model[J]. Chinese Journal of Computers, 2005, 28(5): 900-907.)
[6] 范玉妹, 玄婧.ARMA算法在GDP预测中的应用[J]. 江南大学学报: 自然科学版, 2010, 9(6): 736-740.
[6] (Fan Yumei, Xuan Jing.Application of ARMA Model to GDP Prediction[J]. Journal of Southern Yangtze University: Natural Science Edition, 2010, 9(6): 736-740.)
[7] 杨云霞. 时间序列预测模型及其应用[J]. 太原师范学院学报: 自然科学版, 2005, 4(4): 4-7.
[7] (Yang Yunxia.Prediction Model and Application of Temporal Sequence[J]. Journal of Taiyuan Normal University: Natural Science Edition, 2005, 4(4): 4-7.)
[8] 杜华英. 基于PSO算法的BP神经网络研究[J]. 现代计算机, 2009(2): 22-27.
[8] (Du Huaying.Research on BP Neural Network Based on PSO Algorithm[J]. Modern Computer, 2009(2): 22-27.)
[9] Taylor S E, Peplou L A, Sears D O.社会心理学[M]. 第10版.谢晓非, 谢冬梅, 张怡玲, 等译. 北京: 北京大学出版社, 2004: 325-326.
[9] (Taylor S E, Peplou L A, Sears D O.Psychology [M]. The 10th Edition. Translated by Xie Xiaofei, Xie Dongmei, Zhang Yiling, et al. Beijing: Beijing University Press, 2004: 325-326.)
[10] Abrahamson E, Rosenkopf L.Institutional and Competitive Bandwagons: Using Mathematical Modeling as a Tool to Explore Innovation Diffusion[J]. Academy of Management Review, 1993, 18(3): 487-517.
[11] 刘锦德. 基于不完全信息演化博弈模型的网络舆情传播羊群行为[J].国防科技大学学报, 2013, 35(5): 96-101.
[11] (Liu Jinde.Herb Behavior in Dissemination of Public on the Internet Based on Evolutionarey Game Model with Incomplete Information[J]. Journal of National University of Defense Technology, 2013, 35(5): 96-101.)
[12] Maslov S, Sneppen K.Specificity and Stability in Topology of Protein Networks[J]. Science, 2002, 296(5569): 910-913.
[13] Lam L.Histophysics: A New Discipline[J]. Modern Physics Letters B, 2002, 16(30): 1163-1176.
[14] Liben-Nowell D, Kleinberg J.The Link Prediction Problem for Social Networks[J]. Journal of the American Society for Information Science and Technology, 2007, 58(7): 1019-1031.
[15] Murata T, Moriyasu S.Link Prediction of Social Networks Based on Weighted Proximity Measures [C]. In: Proceedings of the 2011 IEEE/WIC/ACM International Conference on Web Intelligence. IEEE, 2007: 85-88.
[16] Leskovec J, Huttenlocher D, Kleinberg J.Predicting Positive and Negative Links in Online Social Networks [C]. In: Proceedings of the 19th International Conference on World Wide Web. 2010: 641-650.
[17] 吴少华, 崔鑫, 胡勇. 基于SNA参数增量的网络舆论调控时机研究[J]. 网络安全技术与应用, 2014(6): 167-168.
[17] (Wu Shaohua, Cui Xin, Hu Yong.A Study on the Timing to Guide Intemet Public Opinion Based on SNA[J]. Net Security Technologies and Application, 2014(6): 167-168.)
[18] Ahn Y Y, Han S, Kwak H, et al.Analysis of Topological Characteristics of Huge Online Social Networking Services [C]. In: Proceedings of the 16th International Conference on World Wide Web. 2007: 835-844.
[19] Fu F, Chen X, Liu L, et al.Social Dilemmas in an Online Social Network: The Structure and Evolution of Cooperation[J]. Physics Letters A, 2007, 371(1): 58-64.
[20] Mislove A, Marcon M, Gummadi K P, et al.Measurement and Analysis of Online Social Networks [C]. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. 2007: 29-42.
[21] Kumar R, Novak J, Tomkins A.Structure and Evolution of Online Social Networks [A]. // Social Networking[M]. Springer International Publishing, 2010: 337-357.
[22] 魏静, 朱恒民, 宋瑞晓, 等.在线知识转移网络的演化规律实证分析[J]. 管理评论, 2014, 26(12): 38-44.
[22] (Wei Jing, Zhu Hengmin, Song Ruixiao, et al.An Empirical Research on Evolution Rules of Online Knowledge Transfer Network[J]. Management Review, 2014, 26(12): 38-44.)
[23] 吕琳媛, 周涛. 链路预测[M]. 北京: 高等教育出版社, 2013.
[23] (Lv Linyuan, Zhou Tao.Link Prediction [M]. Beijing: Higher Education Press, 2013.)
[24] 王林, 商超. 无标度网络中的链路预测问题研究[J]. 计算机工程, 2012, 38(2): 67-70.
[24] (Wang Lin, Shang Chao.Research on Link Prediction Problem in Scale-free Network[J]. Computer Engineering, 2012, 38(2): 67-70.)
[25] 田占伟. 基于复杂网络的微博信息传播研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
[25] (Tian Zhanwei.Research on Microblog Inforamtion Transmission Based on Complex Network [D]. Harbin: Harbin Institute of Technology, 2012.)
[1] Shan Xiaohong,Wang Chunwen,Liu Xiaoyan,Han Shengxi,Yang Juan. Identifying Lead Users in Open Innovation Community from Knowledge-based Perspectives[J]. 数据分析与知识发现, 2021, 5(9): 85-96.
[2] Wu Shengnan, Pu Hongjun, Tian Ruonan, Liang Wenqi, Yu Qi. Network Structure’s Impacts on Link Prediction Algorithm from Meta-Analysis Perspective[J]. 数据分析与知识发现, 2021, 5(11): 102-113.
[3] Yu Chuanming, Zhang Zhengang, Kong Lingge. Comparing Knowledge Graph Representation Models for Link Prediction[J]. 数据分析与知识发现, 2021, 5(11): 29-44.
[4] Chen Wenjie. Predicting Research Collaboration Based on Translation Model[J]. 数据分析与知识发现, 2020, 4(10): 28-36.
[5] Chuanming Yu,Haonan Li,Manyi Wang,Tingting Huang,Lu An. Knowledge Representation Based on Deep Learning:Network Perspective[J]. 数据分析与知识发现, 2020, 4(1): 63-75.
[6] Junwan Liu,Zhixin Long,Feifei Wang. Finding Collaboration Opportunities from Emerging Issues with LDA Topic Model and Link Prediction[J]. 数据分析与知识发现, 2019, 3(1): 104-117.
[7] Yu Chuanming,Gong Yutian,Zhao Xiaoli,An Lu. Collaboration Recommendation of Finance Research Based on Multi-feature Fusion[J]. 数据分析与知识发现, 2017, 1(8): 39-47.
[8] Lv Weimin,Wang Xiaomei,Han Tao. Recommending Scientific Research Collaborators with Link Prediction and Extremely Randomized Trees Algorithm[J]. 数据分析与知识发现, 2017, 1(4): 38-45.
[9] Zhu Hengmin, Li Qing. Public Opinion Propagation Model with Topic Derivatives in the Micro-blog Network[J]. 现代图书情报技术, 2012, 28(5): 60-64.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938