Please wait a minute...
New Technology of Library and Information Service  2016, Vol. 32 Issue (1): 65-72    DOI: 10.11925/infotech.1003-3513.2016.01.10
Orginal Article Current Issue | Archive | Adv Search |
Analysis and Visualization of the LOD Network Structure
Lixin Xia,Ying Tan()
School of Information Management, Central China Normal University, Wuhan 430079, China
Export: BibTeX | EndNote (RIS)      

[Objective] This paper aims to analyze the structural features of Linked Open Data (LOD), and the results can be used to guide the organization of linked data in practice. [Methods] Describing LOD network with degree distribution, average path length, clustering coefficient and other indexes, this paper compares scale-free network and small-world network in the complex network theory. [Results] The structure of LOD network shows a power-law distribution, approximate the scale-free network. The Publication subnet of LOD shows a relatively homogeneous exponential distribution. Two networks both have a short average path length and high clustering coefficient. [Limitations] Lack of assigning key nodes to more weight. [Conclusions] Small-world phenomenon of LOD can optimize the retrieval efficiency, and scale-free feature will reduce the stability of the entire network.

Key wordsLinked Open Data      Complex network      Network structure      Visualization     
Received: 20 July 2015      Published: 04 February 2016

Cite this article:

Lixin Xia,Ying Tan. Analysis and Visualization of the LOD Network Structure. New Technology of Library and Information Service, 2016, 32(1): 65-72.

URL:     OR

[1] Bizer C, Heath T, Berner-Lee T.Linked Data-The Story So Far[J]. International Journal on Semantic Web and Information Systems, 2009, 5(3): 1-22.
[2] Schmachtenberg M, Bizer C, Paulheim H. State of the LOD Cloud2014 [R/OL]. (2014-08-30). [2015-04-28].
[3] 夏翠娟, 刘炜, 赵亮, 等. 关联数据发布技术及其实现——以Drupal为例[J]. 中国图书馆学报, 2012, 38(1): 49-57.
[3] (Xia Cuijuan, Liu Wei, Zhao Liang, et al.The Current Technologies and Tools for Linked Data: A Case of Drupal[J]. Journal of Library Science in China, 2012, 38(1): 49-57.)
[4] 沈志宏, 刘筱敏, 郭学兵,等. 关联数据发布流程与关键问题研究——以科技文献、科学数据发布为例[J]. 中国图书馆学报, 2013, 39(2): 53-62.
[4] (Shen Zhihong, Liu Xiaomin, Guo Xuebing, et al.A Research on Publishing Workflow and Key Issues of Linked Data: Experience with Publishing Scientific Literature and Scientific Data as Linked Data [J]. Journal of Library Science in China, 2013, 39(2): 53-62.)
[5] 王忠义, 夏立新, 石义金, 等. 数字图书馆中层关联数据的创建与发布[J]. 现代图书情报技术, 2013(5): 28-33.
[5] (Wang Zhongyi, Xia Lixin, Shi Yijin, et al.The Creation and Publishing of Middle Linked Data in Digital Library [J]. New Technology of Library and Information Service, 2013(5): 28-33.)
[6] 白海燕, 梁冰. 利用D2R实现关系数据库与关联数据的语义模式映射[J]. 现代图书情报技术, 2011(7-8): 1-7.
[6] Bai Haiyan, Liang Bing.Semantic Pattern Mapping Between RDBMS and Linked Data Based on Open Source Software[J]. New Technology of Library and Information Service, 2011(7-8): 1-7.)
[7] 沈志宏, 黎建辉, 张晓林. 关联数据互联技术研究综述: 应用、方法与框架[J]. 图书情报工作, 2013, 57(14): 125-133.
[7] (Shen Zhihong, Li Jianhui, Zhang Xiaolin.Research Review on the Interlinking Technology of Linked Data: Applications, Methods and Frameworks[J]. Library and Information Service, 2013, 57(14): 125-133.)
[8] 朱雯晶, 夏翠娟, 刘炜. SILK关联发现框架综析[J]. 现代图书情报技术, 2013(4): 18-24.
[8] (Zhu Wenjing, Xia Cuijuan, Liu Wei.Analysis of SILK Linkage Discovery Framework[J]. New Technology of Library and Information Service, 2013(4): 18-24.)
[9] 白海燕, 朱礼军. 关联数据的自动关联构建研究[J]. 现代图书情报技术, 2010(2): 44-49.
[9] (Bai Haiyan, Zhu Lijun.Research on Automatic Interlinking of Linked Data[J]. New Technology of Library and Information Service, 2010(2): 44-49.)
[10] 马费成, 赵红斌, 万燕玲, 等. 基于关联数据的网络信息资源集成[J]. 情报杂志, 2011, 30(2): 167-170, 175.
[10] (Ma Feicheng, Zhao Hongbin, Wan Yanling, et al.Integration of Network Information Resource Based on Linked Data[J]. Journal of Intelligence, 2011, 30(2): 167-170, 175.)
[11] 欧石燕, 胡珊, 张帅. 本体与关联数据驱动的图书馆信息资源语义整合方法及其测评[J]. 图书情报工作, 2014, 58(2): 5-13.
[11] (Ou Shiyan, Hu Shan, Zhang Shuai.An Ontology & Linked Data Driven Semantic Integrantion Method of Library Information Resources and Its Evaluation[J]. Library and Information Service, 2014, 58(2): 5-13.)
[12] Schmachtenberg M, Bizer C, Paulheim H.Adoption of the Linked Data Best Practices in Different Topical Domains [C]. In: Proceedings of the 13th International Semantic Web Conference, Riva del Garda, Italy. Springer International Publishing, 2014: 245-260.
[13] Auer S, Demter J, Martin M, et al.Lodstats-An Extensible Framework for High-Performance Dataset Analytics [C]. In: Proceedings of the 18th International Conference on Knowledge Engineering and Knowledge Management, Galway, Ireland. Springer Berlin Heidelberg, 2012: 353-362.
[14] Campinas S, Ceccarelli D, Delbru R, et al.The Sindice-2011 Dataset for Entity-Oriented Search in the Web of Data [C]. In: Proceedings of the 1st International Workshop on Entity-oriented Search (EOS), Beijing, China. 2011: 26-32.
[15] Bizer C, Eckert, K, Meusel , R, et al. Deployment of RDFa, Microdata, and Microformats on the Web-A Quantitative Analysis [C]. In: Proceedings of the 12th International Semantic Web Conference, Sydney, Australia. 2013: 17-32.
[16] 汪小帆, 李翔, 陈关荣. 网络科学导论[M]. 北京: 高等教育出版社, 2012: 108-115.
[16] (Wang Xiaofan, Li Xiang, Chen Guanrong.Network Science: An Introduction [M]. Beijing: High Education Press, 2012: 108-115.)
[17] 汪小帆, 李翔, 陈关荣. 复杂网络:理论及其应用[M]. 第4版. 北京: 清华大学出版社, 2006: 22-34.
[17] (Wang Xiaofan, Li Xiang, Chen Guanrong.Complex Networks: Theory and Its Application[M]. The 4th Edition. Beijing: Tsinghua University Press, 2006: 22-34.)
[18] About the Datahub [EB/OL]. [2015-04-28].
[19] Describing Linked Datasets with the Void Vocabulary [EB/OL]. [2015-04-28].
[20] Heath T, Bizer C.Linked Data: Evolving the Web into a Global Data Space[M]. San Rafael: Morgan & Claypool Publishers, 2011:64.
[21] RKB Explorer [EB/OL]. [2015-04-28]. .
[1] Chen Wenjie,Wen Yi,Yang Ning. Fuzzy Overlapping Community Detection Algorithm Based on Node Vector Representation[J]. 数据分析与知识发现, 2021, 5(5): 41-50.
[2] Wu Shengnan, Pu Hongjun, Tian Ruonan, Liang Wenqi, Yu Qi. Network Structure’s Impacts on Link Prediction Algorithm from Meta-Analysis Perspective[J]. 数据分析与知识发现, 2021, 5(11): 102-113.
[3] Wang Song, Yang Yang, Liu Xinmin. Discovering Potentialities of User Ideas from Open Innovation Communities with Graph Attention Network[J]. 数据分析与知识发现, 2021, 5(11): 89-101.
[4] Li Wenzheng,Gu Yijun,Yan Hongli. Predicting Community Numbers with Network Bayesian Information Criterion[J]. 数据分析与知识发现, 2020, 4(4): 72-82.
[5] Chen Ting,Wang Haiming,Wang Xiaomei. Detecting Funding Topics Evolutions with Visualization[J]. 数据分析与知识发现, 2020, 4(2/3): 60-67.
[6] Qingtian Zeng,Xiaohui Hu,Chao Li. Extracting Keywords with Topic Embedding and Network Structure Analysis[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[7] Haici Yang,Jun Wang. Visualizing Knowledge Graph of Academic Inheritance in Song Dynasty[J]. 数据分析与知识发现, 2019, 3(6): 109-116.
[8] Yanan Yang,Wenhui Zhao,Jian Zhang,Shen Tan,Beibei Zhang. Visualizing Policy Texts Based on Multi-View Collaboration[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[9] Jiang Wu,Guanjun Liu,Xian Hu. An Overview of Online Medical and Health Research: Hot Topics, Theme Evolution and Research Content[J]. 数据分析与知识发现, 2019, 3(4): 2-12.
[10] Xiang Li,Xiaodong Qian. Research on Impact of Commodity Online Evaluation for Consumption Convergence[J]. 数据分析与知识发现, 2019, 3(3): 102-111.
[11] Zhiqiang Wu,Zhongming Zhu,Wei Liu,Sili Wang. Research and Practice on the Extension of Knowledge Analysis and Visualization Function in CSpace[J]. 数据分析与知识发现, 2019, 3(3): 112-119.
[12] Jiao Yan,Jing Ma,Kang Fang. Computing Text Semantic Similarity with Syntactic Network of Co-occurrence Distance[J]. 数据分析与知识发现, 2019, 3(12): 93-100.
[13] Wuxuan Jiang,Huixiang Xiong,Jiaxin Ye,Ning An. Creating Dynamic Tags for Social Networking Groups[J]. 数据分析与知识发现, 2019, 3(10): 98-109.
[14] Chen Ting,Li Guopeng,Wang Xiaomei. Visualizing Appropriation of Research Funding with t-SNE Algorithm[J]. 数据分析与知识发现, 2018, 2(8): 1-9.
[15] Qian Xiaodong,Li Min. Identifying E-commerce User Types Based on Complex Network Overlapping Community[J]. 数据分析与知识发现, 2018, 2(6): 79-91.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938