Please wait a minute...
New Technology of Library and Information Service  2016, Vol. 32 Issue (2): 43-51    DOI: 10.11925/infotech.1003-3513.2016.02.06
Orginal Article Current Issue | Archive | Adv Search |
A Framework for Customer Segmentation on Enterprises’ Microblog
Chen Dongyi1,3,Zhou Zicheng1(),Jiang Shengyi1,Wang Lianxi2,Wu Jialin1
1School of Informatics, Guangdong University of Foreign Studies, Guangzhou 510006, China
2Guangdong University of Foreign Studies Library, Guangzhou 510420, China
3S.F.EXPRESS Co. Ltd., Shenzhen 518000, China
Export: BibTeX | EndNote (RIS)      

[Objective] This study tried to describe the customers’ characteristics effectively. [Methods] The proposed framework aimed to explore the personal and social relationship among the customers and their friends on the microblog platform. We described the customers’ characteristics using self-defined tags and then created segmentation with the help of text clustering and non-negative matrix factorization technologies. [Results] The method based on non-negative matrix factorization achieved an approximately 86.130% on average asw index, which outperformed traditional methods based on K-means and hierarchical clustering. [Limitations] The customers’ characteristic cannot be described only by himself and his friends with self-defined tags on Microblogging. [Conclusions] The proposed framework could improve the effectiveness of characteristics description, evaluation and visualization of microblog customer segmentation.

Key wordsCustomer segmentation      Microblogging marketing      Text clustering      Non-negative matrix factorization     
Received: 27 July 2015      Published: 08 March 2016

Cite this article:

Chen Dongyi,Zhou Zicheng,Jiang Shengyi,Wang Lianxi,Wu Jialin. A Framework for Customer Segmentation on Enterprises’ Microblog. New Technology of Library and Information Service, 2016, 32(2): 43-51.

URL:     OR

[1] Pang G S, Jiang S Y, Chen D Y.A Simple Integration of Social Relationship and Text Data for Identifying Potential Customers in Microblogging [A]. //Advanced Data Mining and Applications[M]. Springer Berlin Heidelberg, 2013: 397-409.
[2] Hennig-Thurau T, Malthouse E C, Friege C, et al.The Impact of New Media on Customer Relationships[J]. Journal of Service Research, 2010, 13(3): 311-330.
[3] Stelzner M A. Social Media Marketing Industry Report [EB/OL]. [2016-06-15]. .
[4] Rajagopal S.Customer Data Clustering Using Data Mining Technique[J]. International Journal of Database Management Systems, 2011, 3(4): 1-11.
[5] Lefait G, Kechadi T.Customer Segmentation Architecture Based on Clustering Techniques [C]. In: Proceedings of the 4th International Conference on Digital Society. IEEE, 2010: 243-248.
[6] Wu J, Lin Z.Research on Customer Segmentation Model by Clustering [C]. In: Proceedings of the 7th International Conference on Electronic Commerce. ACM, 2005: 316-318.
[7] Pennacchiotti M, Popescu A M.Democrats, Republicans and Starbucks Afficionados: User Classification in Twitter [C]. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2011: 430-438.
[8] Tinati R, Carr L, Hall W, et al.Identifying Communicator Roles in Twitter[C]. In: Proceedings of the 21st International Conference Companion on World Wide Web. ACM, 2012: 1161-1168.
[9] Fink C, Kopecky J, Morawskib M.Inferring Gender from the Content of Tweets: A Region Specific Example [C]. In: Proceedings of the 6th International AAAI Conference on Weblogs and Social Media, Dublin, Ireland. AAAI, 2012: 459-462.
[10] Steinbach M, Karypis G, Kumar V.A Comparison of Document Clustering Techniques [C]. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2000: 1-20.
[11] Jain A K, Murty M N, Flynn P J.Data Clustering: A Review[J]. ACM Computing Surveys, 1999, 31(3): 264-323.
[12] Willett P.Recent Trends in Hierarchic Document Clustering: A Critical Review[J]. Information Processing and Management, 1988, 24(5): 577-597.
[13] Rao D, Yarowsky D, Shreevats A, et al.Classifying Latent User Attributes in Twitter [C]. In: Proceedings of the 2nd International Workshop on Search and Mining User-generated Contents. ACM, 2010: 37-44.
[14] Lee D D, Seung H S.Learning the Parts of Objects by Non-negative Matrix Factorization[J]. Nature, 1999, 401(6755): 788-791.
[15] Shahnaz F, Berry M W, Pauca V P, et al.Document Clustering Using Nonnegative Matrix Factorization[J]. Information Processing & Management, 2006, 42(2): 373-386.
[16] Wang X, Tang J, Liu H.Document Clustering via Matrix Representation [C]. In: Proceedings of the 11th International Conference on Data Mining. IEEE, 2011: 804-813.
[17] Gautam B P, Shrestha D.Document Clustering Through Non-Negative Matrix Factorization: A Case Study of Hadoop for Computational Time Reduction of Large Scale[J]. 稚内北星学園大学紀要, 2010, 10(3): 15-25.
[18] 黄钢石, 陆建江, 张亚非. 基于NMF的文本聚类方法[J]. 计算机工程, 2004, 30(11):113-114.
[18] (Huang Ggangshi, Lu Jianjiang, Zhang Yafei.Text Clustering Method Based on Non-negative Matrix Factorization[J]. Computer Engineering, 2004, 30(11): 113-114.)
[19] 张磊, 冯晓森, 项学智. 基于非负矩阵分解的中文文本主题分类[J]. 计算机工程, 2009, 35(13):26-27.
[19] (Zhang Lei, Feng Xiaosen, Xiang Xuezhi.Topic Classification of Chinese Document Based on NMF[J]. Computer Engineering, 2009, 35(13): 26-27.)
[20] Calinski T, Harabasz J.A Dendrite Method for Cluster Analysis[J]. Communications in Statistics, 1974, 3(1): 1-27.
[21] Rousseeuw P J.Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20(1): 53-65.
[22] Brunet J P, Tamayo P, Golub T, et al.Metagenes and Molecular Pattern Discovery Using Matrix Factorization[J]. Proceedings of the National Academy of Sciences (PNAS), 2004, 101(12): 4164-4169.
[1] Huaming Zhao,Li Yu,Qiang Zhou. Determining Best Text Clustering Number with Mean Shift Algorithm[J]. 数据分析与知识发现, 2019, 3(9): 27-35.
[2] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[3] Zhang Tao,Ma Haiqun. Clustering Policy Texts Based on LDA Topic Model[J]. 数据分析与知识发现, 2018, 2(9): 59-65.
[4] Shi Xiaohua,Lu Hongtao. Detecting Community in Scientific Collaboration Network with Bayesian Symmetric NMF[J]. 数据分析与知识发现, 2017, 1(9): 49-56.
[5] Guan Qin,Deng Sanhong,Wang Hao. Chinese Stopwords for Text Clustering: A Comparative Study[J]. 数据分析与知识发现, 2017, 1(3): 72-80.
[6] Hu Xiaoxue. Customer Segmentation with Adaptive Evolutionary Clustering[J]. 数据分析与知识发现, 2017, 1(12): 21-31.
[7] Gong Kaile,Cheng Ying,Sun Jianjun. Clustering Blog Posts with Co-occurrence Analysis[J]. 现代图书情报技术, 2016, 32(10): 50-58.
[8] Gu Xiaoxue, Zhang Chengzhi. Using Content and Tags for Web Text Clustering[J]. 现代图书情报技术, 2014, 30(11): 45-52.
[9] Xu Xin, Hong Yunjia. Study on Text Visualization of Clustering Result for Domain Knowledge Base —— Take Knowledge Base of Chinese Cuisine Culture as the Object[J]. 现代图书情报技术, 2014, 30(10): 25-32.
[10] Deng Sanhong,Wan Jiexi,Wang Hao,Liu Xiwen. Experimental Study of Multilingual Text Clustering[J]. 现代图书情报技术, 2014, 30(1): 28-35.
[11] Zhao Hui, Liu Huailiang. Research on Short Text Clustering Algorithm for User Generated Content[J]. 现代图书情报技术, 2013, 29(9): 88-92.
[12] He Wenjing, He Lin. Research on Text Clustering Based on Social Tagging[J]. 现代图书情报技术, 2013, 29(7/8): 49-54.
[13] Hong Yunjia, Xu Xin. Study on Multi-level Text Clustering for Knowledge Base Based on Domain Ontology——Taking Knowledge Base of Chinese Cuisine Culture as an Example[J]. 现代图书情报技术, 2013, (12): 19-26.
[14] Bian Peng, Zhao Yan, Su Yuzhao. An Improved Method for Determining Optimal Number of Clusters in K-means Clustering Algorithm[J]. 现代图书情报技术, 2011, 27(9): 34-40.
[15] Li Ying Wu Yuanyuan Ning Fujin. Application of a Modified K-means Clustering Algorithm Based on PSO in Customer Segmentation of Securities Industry[J]. 现代图书情报技术, 2010, 26(7/8): 88-94.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938