Please wait a minute...
New Technology of Library and Information Service  2016, Vol. 32 Issue (3): 18-24    DOI: 10.11925/infotech.1003-3513.2016.03.03
Orginal Article Current Issue | Archive | Adv Search |
User Tags and Microblog Posts: Case Study of Sina Weibo
Zhu Ling,Xue Chunxiang(),Zhang Chengzhi,Fu Zhu
School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China
Export: BibTeX | EndNote (RIS)      

[Objective] This study aims to explore the relationship between the user tags and microblog post topics, with the purpose of improving subject identification and automatic tag recommendation services. [Methods] We first used crawlers to retrieve user profiles and posts in the field of “natural language processing” from the Sina Weibo. Second, extracted words from the posts and semantically extended user tags. Finally, matched the tags and posts by the edit distance algorithm. [Results] There was correlation between user tags and posts in natural language processing field. [Limitations] We only studied one academic field and the Sina Weibo, more research is needed in the future to generalize the results. [Conclusions] The tag recommendation system can use microblog posts as an important source to provide more personalized services, which in turn will improve the microblog content analysis.

Key wordsSubject analysis of posts      User tags      Correlation measure      Subject indexing      User modeling     
Received: 14 September 2015      Published: 12 April 2016

Cite this article:

Zhu Ling,Xue Chunxiang,Zhang Chengzhi,Fu Zhu. User Tags and Microblog Posts: Case Study of Sina Weibo. New Technology of Library and Information Service, 2016, 32(3): 18-24.

URL:     OR

[1] Al-Khalifa H S, Davis H C. Folksonomies Versus Automatic Keyword Extraction: An Empirical Study[J]. IADIS International Journal on Computer Science and Information Systems, 2006, 1(2): 132-143.
[2] Rolla P J.User Tags Versus Subject Headings[J]. Library Resources & Technical Services, 2011, 53(3): 174-184.
[3] Thomas M, Caudle D M, Schmitz C M.To Tag or not to Tag?[J]. Library Hi Tech, 2009, 27(3): 411-434.
[4] Lu C, Park J R, Hu X.User Tags Versus Expert-assigned Subject Terms: A Comparison of LibraryThing Tags and Library of Congress Subject Headings[J]. Journal of Information Science, 2010, 36(6): 763-779.
[5] 潘婵, 冯利飞, 丁婉莹, 等. 基于标签-关键词的用户行为分析[J]. 情报杂志, 2010, 29(3): 139-142.
[5] (Pan Chan, Feng Lifei, Ding Wanying.Tag and Keyword-Based Analysis of Users’ Behavior[J]. Journal of Intelligence, 2010, 29(3): 139-142.)
[6] Kipp M E I. Tagging of Biomedical Articles on CiteULike: A Comparison of User, Author and Professional Indexing[J]. Knowledge Organization, 2011, 38(3): 245-261.
[7] Lee D H, Schleyer T.Social Tagging is no Substitute for Controlled Indexing: A Comparison of Medical Subject Headings and CiteULike Tags Assigned to 231, 388 Papers[J]. Journal of the American Society for Information Science and Technology, 2012, 63(9): 1747-1757.
[8] 黄红霞, 章成志. 中文微博用户标签的调查分析——以新浪微博为例[J]. 现代图书情报技术, 2012(10): 49-54.
[8] (Huang Hongxia, Zhang Chengzhi.Investigation and Analysis of Chinese Microblog User Tags——Using Sina Weibo as Example[J]. New Technology of Library and Information Service, 2012(10): 49-54.)
[9] 章成志, 何陆琳, 丁培红. 不同领域的用户标签主题表达能力差异研究——以中文微博为例[J]. 情报理论与实践, 2013, 36(4): 68-71.
[9] (Zhang Chengzhi, He Lulin, Ding Peihong.Difference of Subject Expression Function of User Tags in Different Domains——Using Chinese Microblogging as Example[J]. Information Studies: Theory & Application, 2013, 36(4): 68-71.)
[10] 邢千里, 刘列, 刘奕群, 等. 微博中用户标签的研究[J]. 软件学报, 2015, 26(7): 1626-1637.
[10] (Xing Qianli, Liu Lie, Liu Yiqun, et al.Study on User Tags in Weibo[J]. Journal of Software, 2015, 26(7): 1626-1637.)
[11] Baeza-Yates R, Ribeiro-Neto B.Modern Information Retrieval [M]. New York: ACM Press, 1999.
[12] Kozima H, Furugori T.Similarity Between Words Computed by Spreading Activation on an English Dictionary [C]. In: Proceedings of the 6th Conference on European Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, 1993: 232-239.
[13] 江敏, 肖诗斌, 王弘蔚, 等. 一种改进的基于《知网》的词语语义相似度计算[J]. 中文信息学报, 2008, 22(5): 84-89.
[13] (Jiang Min, Xiao Shibin, Wang Hongwei, et al.An Improved Word Similarity Computing Method Based on HowNet[J]. Journal of Chinese Information Processing, 2008, 22(5): 84-89.)
[14] Budanitsky A, Hirst G.Semantic Distance in WordNet: An Experimental, Application-oriented Evaluation of Five Measures [C]. In: Proceedings of the Workshop on WordNet and Other Lexical Resources, the 2nd Meeting of the North American Chapter of the Association for Computational Linguistics, Pittsburgh. 2001.
[15] Levenshtein V I.Binary Codes Capable of Correcting Deletions, Insertions, and Reversals[J]. Soviet Physics Doklady, 1966, 10(8): 707-710.
[1] Hui Nie. Modeling Users with Word Vector and Term-Graph Algorithm[J]. 数据分析与知识发现, 2019, 3(12): 30-40.
[2] Lu Wei,Luo Mengqi,Ding Heng,Li Xin. Image Annotation Tags by Deep Learning and Real Users: A Comparative Study[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[3] Wang Qiangbing,Zhang Chengzhi. Constructing Users Profiles with Content and Gesture Behaviors[J]. 数据分析与知识发现, 2017, 1(2): 80-86.
[4] Mao Jin, Li Gang, Cao Yujie. Re-rank Retrieval Results Through Subject Indexing[J]. 现代图书情报技术, 2014, 30(7): 48-55.
[5] Zheng Wei, Liang Zhanping, Liang Jian. Research on the Framework of a User Intent-oriented Intelligent Search Engine[J]. 现代图书情报技术, 2014, 30(3): 65-72.
[6] Wang Li, Zhang Dongrong, Zhang Xiaohui, Yang Xiaowei, Wu Ming. Realization of Technology/Effect Maps Generating Based on Subject Automatic Indexing[J]. 现代图书情报技术, 2013, (5): 80-86.
[7] Teng Guangqing, Bi Datian, Ren Jing, Chen Xiaomei. Study on Semantic Closeness of User Tags in Folksonomy[J]. 现代图书情报技术, 2013, (12): 48-54.
[8] Niu Yazhen, Zhu Zhongming. Overview about the Methods of Cross-system User Modeling for Personalization Service[J]. 现代图书情报技术, 2012, 28(5): 1-6.
[9] Zhang Wangqiang, Zhu Zhongming, Lu Linong, Zhou Zijian, Zhang Shinan, Huang Jinxia, Song Wen, Liu Yi. Implementation and Application of Integrating Subject Indexing and Search Clustering Service of OpenKOS in Institutional Repository[J]. 现代图书情报技术, 2012, 28(3): 1-7.
[10] Niu Yazhen, Zhu Zhongming. A Linked Data-driven Semantic User Modeling Framework for Personalization Service[J]. 现代图书情报技术, 2012, (10): 1-7.
[11] Ku Liping. Research on that User Behaviour Model Driven Information System Design[J]. 现代图书情报技术, 2010, 26(7/8): 45-50.
[12] Zhang Yu,Su Xiaolu,Liu Shihong,Li Jing,Hu Haiyan. Design and Realization of Agricultural Scientific Information User Modeling System Based on Ontology[J]. 现代图书情报技术, 2009, 25(11): 34-39.
[13] Jiang Qi. Design of P2P-Based Adaptive Information Retrieval System[J]. 现代图书情报技术, 2005, 21(9): 41-44.
[14] Jiang Qi,Li Guangjian. Reusability in User Modeling[J]. 现代图书情报技术, 2005, 21(12): 7-11.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938