Please wait a minute...
New Technology of Library and Information Service  2016, Vol. 32 Issue (6): 80-87    DOI: 10.11925/infotech.1003-3513.2016.06.10
Orginal Article Current Issue | Archive | Adv Search |
Group Similarity Based Hybrid Web Service Recommendation Algorithm
Xie Qi1,2(),Cui Mengtian1
1School of Computer Science and Technology, Southwest University for Nationalities, Chengdu 610225, China
2Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
Export: BibTeX | EndNote (RIS)      

[Objective] This paper tries to solve the issues of lacking similar services or users in Web service computing due to the data sparsity of Quality of Service (QoS) recommendation. [Methods] First, we created personalized similar user and service groups according to similarity distance of the target users and services. Second, we used the group center similarities of the user and service groups to design a new hybrid recommendation algorithm(GHQR), which was tested with real-world data of 1.97 million QoS records. [Results] Compared with two traditional recommendation algorithms, the GHQR reduced the Normalized Mean Absolute Error (NMAE) by 31% and 69%. It also increased the Coverage by 105% and 163%, respectively. [Limitations] Our study only examined the response time of QoS, and more research was needed to investigate other QoS properties. [Conclusions] Comprared with WSRec and CFBUGI, the GHQR can reduce the NMAE by 26% and 7.7%. It also increased the Coverage by 188% and 4%, respectively. GHQR not only enhances the prediction accuracy but also increases the coverage significantly.

Key wordsPersonalized recommendation      Service computing      Web services      Quality of Service     
Received: 07 March 2016      Published: 18 July 2016

Cite this article:

Xie Qi,Cui Mengtian. Group Similarity Based Hybrid Web Service Recommendation Algorithm. New Technology of Library and Information Service, 2016, 32(6): 80-87.

URL:     OR

[1] 邵凌霜, 周立, 赵俊峰, 等. 一种Web Service的服务质量预测方法[J]. 软件学报, 2009, 20(8): 2062-2073.
[1] (Shao Lingshuang, Zhou Li, Zhao Junfeng, et al.Web Service QoS Prediction Approach[J]. Journal of Software, 2009, 20(8): 2062-2073.)
[2] Zheng Z, Ma H, Lyu M R, et al.QoS-aware Web Service Recommendation by Collaborative Filtering[J]. IEEE Transactions on Service Computing, 2011, 4(2): 140-152.
[3] Chen X, Zheng Z, Liu X, et al.Personalized QoS-aware Web Service Recommendation and Visualization[J]. IEEE Transactions on Services Computing, 2013, 6(1): 35-47.
[4] He P, Zhu J, Zheng Z, et al.Location-based Hierarchical Matrix Factorization for Web Service Recommendation [C]. In: Proceedings of 2014 IEEE International Conference on Web Services (ICWS2014). Washington, DC: IEEE Computer Society, 2014: 297-304.
[5] 张璇, 刘聪, 王黎霞, 等. 基于协同过滤的可信Web服务推荐方法[J]. 计算机应用, 2014, 34(1): 213-217.
[5] (Zhang Xuan, Liu Cong, Wang Lixia, et al.Trustworthy Web Service Recommendation Based on Collaborative Filtering[J]. Journal of Computer Applications, 2014, 34(1): 213-217.)
[6] 王海艳, 杨文彬, 王随昌, 等. 基于可信联盟的服务推荐方法[J]. 计算机学报, 2014, 37(2): 301-311.
[6] (Wang Haiyan, Yang Wenbin, Wang Suichang, et al.A Service Recommendation Method Based on Trustworthy Community[J]. Chinese Journal of Computers, 2014, 37(2): 301-311.)
[7] 姜波, 张晓筱, 潘伟丰. 基于二部图的服务推荐算法研究[J]. 华中科技大学学报: 自然科学版, 2013, 41(S2): 93-99.
[7] (Jiang Bo, Zhang Xiaoxiao, Pan Weifeng.Bipartite Graph-based Service Recommendation Method Study[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2013, 41(S2): 93-99.)
[8] 林祥云, 刘小青, 唐明董, 等. Web服务QoS与用户位置的相关性实证研究[J]. 计算机工程与科学, 2013, 35(9): 83-88.
[8] (Lin Xiangyun, Liu Xiaoqing, Tang Mingdong, et al.An Empirical Study of Correlation Between Web Service QoS and User Location[J]. Computer Engineering and Science, 2013, 35(9): 83-88.)
[9] Xie Q, Zheng Z, Liu L, et al.Correlation-based Top-k Recommendation for Web Services [C]. In: Proceedings of the 13th IEEE International Conference on Dependable, Autonomic and Secure Computing (DASC-2015), Liverpool, UK. 2015: 1903-1909.
[10] 高虎明, 赵凤跃. 一种融合协同过滤和内容过滤的混合推荐方法[J]. 现代图书情报技术, 2015(6): 20-26.
[10] (Gao Huming, Zhao Fengyue.A Hybrid Recommendation Method Combining Collaborative Filtering and Content Filtering[J]. New Technology of Library and Information Service, 2015(6): 20-26.)
[11] 祝婷, 秦春秀, 李祖海. 基于用户分类的协同过滤个性化推荐方法研究[J]. 现代图书情报技术, 2015(6): 13-19.
[11] (Zhu Ting, Qin Chunxiu, Li Zuhai.Research on Collaborative Filtering Personalized Recommendation Method Based on User Classification[J]. New Technology of Library and Information Service, 2015(6): 13-19.)
[12] 林耀进, 胡学钢, 李慧宗. 基于用户群体影响的协同过滤推荐算法[J]. 情报学报, 2013, 32(3): 299-305.
[12] (Lin Yaojin, Hu Xuegang, Li Huizong.Collaborative Filtering Recommendation Algorithm Based on User Group Influence[J]. Journal of the China Society for Scientific and Technical Information, 2013, 32(3): 299-305.)
[13] 盈艳, 曹妍, 牟向伟. 基于项目评分预测的混合式协同过滤推荐[J]. 现代图书情报技术, 2015(6): 27-32.
[13] (Ying Yan, Cao Yan, Mu Xiangwei.A Hybrid Collaborative Filtering Recommender Based on Item Rating Prediction[J]. New Technology of Library and Information Service, 2015(6): 27-32.)
[1] Wu Yanwen, Cai Qiuting, Liu Zhi, Deng Yunze. Digital Resource Recommendation Based on Multi-Source Data and Scene Similarity Calculation[J]. 数据分析与知识发现, 2021, 5(11): 114-123.
[2] Ding Hao, Ai Wenhua, Hu Guangwei, Li Shuqing, Suo Wei. A Personalized Recommendation Model with Time Series Fluctuation of User Interest[J]. 数据分析与知识发现, 2021, 5(11): 45-58.
[3] Yiwen Zhang,Chenkun Zhang,Anju Yang,Chengrui Ji,Lihua Yue. A Conditional Walk Quadripartite Graph Based Personalized Recommendation Algorithm[J]. 数据分析与知识发现, 2019, 3(4): 117-125.
[4] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[5] Hao Ding,Shuqing Li. Personalized Recommendation Based on Predictive Analysis of User’s Interests[J]. 数据分析与知识发现, 2019, 3(11): 43-51.
[6] Li Jie,Yang Fang,Xu Chenxi. A Personalized Recommendation Algorithm with Temporal Dynamics and Sequential Patterns[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[7] Chen Meimei,Xue Kangjie. Personalized Recommendation Algorithm of Multi-faceted Trust Tensor Based on Tag Clustering[J]. 数据分析与知识发现, 2017, 1(5): 94-101.
[8] Chen Meimei,Xue Kangjie. Personalized Recommendation Algorithm Based on Modified Tensor Decomposition Model[J]. 数据分析与知识发现, 2017, 1(3): 38-45.
[9] Tan Xueqing,Zhang Lei,Huang Cuicui,Luo Lin. A Collaborative Filtering and Recommendation Algorithm Using Trust of Domain-Experts and Similarity[J]. 现代图书情报技术, 2016, 32(7-8): 101-109.
[10] Xu Deshan, Li Hui, Zhang Yunliang. A Method of Keywords Annotation Based on Linked Triples[J]. 现代图书情报技术, 2015, 31(9): 31-37.
[11] Zhu Ting, Qin Chunxiu, Li Zuhai. Research on Collaborative Filtering Personalized Recommendation Method Based on User Classification[J]. 现代图书情报技术, 2015, 31(6): 13-19.
[12] Gao Huming, Zhao Fengyue. A Hybrid Recommendation Method Combining Collaborative Filtering and Content Filtering[J]. 现代图书情报技术, 2015, 31(6): 20-26.
[13] Lu Xiaoming. Research on a Lightweight Academic Library Context-aware Recommendation Service Platform Based on GimbalTM[J]. 现代图书情报技术, 2015, 31(3): 101-107.
[14] Song Meiqing. Research on Multi-granularity Users' Preference Mining Based on Collaborative Filtering Personalized Recommendation[J]. 现代图书情报技术, 2015, 31(12): 28-33.
[15] Wang Weijun, Song Meiqing. A Collaborative Filtering Personalized Recommendation Algorithm Through Directionally Mining Users’ Preferences[J]. 现代图书情报技术, 2014, 30(6): 25-32.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938