Please wait a minute...
New Technology of Library and Information Service  2016, Vol. 32 Issue (9): 58-64    DOI: 10.11925/infotech.1003-3513.2016.09.07
Orginal Article Current Issue | Archive | Adv Search |
Identifying Core Users in Social Resource Recommendation System with K-shell Collapse Sequences
Wu Huijuan1,2(),Jia Tina Du2,Sun Hongfei1,Jannatul Fardous2
1School of Economics & Management, Northeast Dianli University, Jilin 132012, China
2Information Technology and Mathematical Sciences, University of South Australia, Adelaide 5001, Australia
Export: BibTeX | EndNote (RIS)      

[Objective] This study aims to identify the core users in social minority groups with the help of social network behavior analysis technique, and then improve the service of social resources recommendation. [Methods] First, we collected 1,208 user tags from the website of Douban Reading, and built co-occurrence matrix for the top 100 tags. Second, we analyzed these users’ K-shell network structure and then investigated its collapse sequences volatility. [Results] We found new core users from the social minority group using the proposed method. [Limitations] The sample data size was relatively small and from only one specific field. The K-shell analysis method needed to be modified to improve the result ranking. [Conclusions] The proposed method could help the social media administrators develop new resources recommendation strategy, and promote the development of social networking systems.

Key wordsCore user      Social resource recommendation      Social network analysis      K-shell collapse sequences     
Received: 15 April 2016      Published: 19 October 2016

Cite this article:

Wu Huijuan,Jia Tina Du,Sun Hongfei,Jannatul Fardous. Identifying Core Users in Social Resource Recommendation System with K-shell Collapse Sequences. New Technology of Library and Information Service, 2016, 32(9): 58-64.

URL:     OR

[1] Guy I, Zwerdling N, Ronen I, et al.Social Media Recommendation Based on People and Tags [C]. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2010: 194-201.
[2] Wang J, Clements M, Yang J, et al.Personalization of Tagging Systems[J]. Information Processing & Management, 2010, 46(1): 58-70.
[3] Guy I, Carmel D.Social Recommender Systems [C]. In: Proceedings of the 20th International Conference Companion on World Wide Web. ACM, 2011: 283-284.
[4] Wortham J. Search Takes a Social Turn [EB/OL]. [2016- 04-02]. .
[5] 胡吉明, 张蔓蒂. 基于用户—资源关联的社会化小众推荐模型研究[J]. 情报理论与实践, 2014, 37(4): 123-126, 118.
[5] (Hu Jiming, Zhang Mandi.Research on the Social Minority Recommendation Model Based on User-Resources Association[J]. Information Studies: Theory & Application, 2014, 37(4): 123-126, 118.)
[6] 让·梅松纳夫. 群体动力学[M]. 殷世才, 孙兆通译. 北京: 商务印书馆, 1997.
[6] (Jean Maisonneuve.Group Dynamics [M]. Translated by Yin Shicai, Sun Zhaotong. Beijing: The Commercial Press, 1997.)
[7] 李纲, 叶光辉. 多源专家特征信息融合研究[J]. 现代图书情报技术, 2014(4): 27-33.
[7] (Li Gang, Ye Guanghui.Research on Information Fusion for Multiple-sensor Expert Features[J]. New Technology of Library and Information Service, 2014(4): 27-33.)
[8] Momtaz N J, Aghaie A, Alizadeh S.Identifying Opinion Leaders for Marketing by Analyzing Online Social Networks[J]. International Journal of Virtual Communities and Social Netwoking, 2011, 3(3): 19-34.
[9] Zhang W, He H, Cao B.Identifying and Evaluating the Internet Opinion Leader Community Based on K-clique Identifying and Evaluating the Internet Opinion Leader Community Based on K-clique Clustering[J]. Neural Computing & Applications, 2014, 25(3): 595-602.
[10] Gnambs T, Batinic B.The Roots of Interpersonal Influence: A Mediated Moderation Model for Knowledge and Traits as Predictors of Opinion Leadership[J]. Applied Psychology, 2013, 62(4): 597-618.
[11] 王国华, 张剑, 毕帅辉. 突发事件网络舆情演变中意见领袖研究——以药家鑫事件为例[J]. 情报杂志, 2011, 30(12): 1-5.
[11] (Wang Guohua, Zhang Jian, Bi Shuaihui.Study on Opinion Leaders of Emergencies in Network Opinion Evolution: A Case Study of Yao Jiaxin Event[J]. Journal of Intelligence, 2011, 30(12): 1-5.)
[12] 顾品浩, 蒋冠, 突发性公共事件中的网络意见领袖分析——以“杨达才事件”为例[J]. 情报杂志, 2013, 32(5): 20-24.
[12] (Gu Pinhao, Jiang Guan.Analysis on Network Opinion Leaders in Public Emergencies——A Case Study of YANG Dacai Event[J]. Journal of Intelligence, 2013, 32(5): 20-24.)
[13] 李纲, 叶光辉, 张岩. “小众专家”特征识别——基于 MetaFilter 的实证分析[J].现代图书情报技术, 2015(6): 71-77.
[13] (Li Gang, Ye Guanghui, Zhang Yan.Feature Recognition of Niche Expert——Empirical Analysis Based on MetaFilter Dataset[J]. New Technology of Library and Information Service, 2015(6): 71-77.)
[14] 陈福集, 陈婷. 舆情突发事件演化探析——基于意见领袖引导作用视角[J]. 情报资料工作, 2015(2): 23-28.
[14] (Chen Fuji, Chen Ting.Research on Public Opinion Emergencies Evolution: Based on the Perspective of Opinion Leaders Guiding Role[J]. Information and Documentation Services, 2015(2): 23-28.)
[15] He Y, Tan J.Study on SINA Micro-blog Personalized Recommendation Based on Semantic Network[J]. Expert Systems with Applications, 2015, 42(10): 4797-4804.
[16] Kitsak M, Gallos L K, Havlin S, et al.Identification of Influential Spreaders in Complex Networks[J]. Nature Physics, 2010, 6(11): 888-893.
[17] 周漩, 张凤鸣, 李克武, 等. 利用重要度评价矩阵确定复杂网络关键节点[J]. 物理学报, 2012, 61(5): 05020101-05020107.
[17] (Zhou Xuan, Zhang Fengming, Li Kewu, et al.Finding Vital Node by Node Importance Evaluation Matrix in Complex Networks[J]. Acta Physica Sinica, 2012, 61(5): 05020101-05020107.)
[18] 任卓明, 刘建国, 邵凤, 等. 复杂网络中最小K-核节点的传播能力分析[J]. 物理学报, 2013, 62(10): 10890201-10890206.
[18] (Ren Zhuoming, Liu Jianguo, Shao Feng, et al.Analysis of the Spreading Influence of the Nodes with Minimum K-shell Value in Complex Networks[J]. Acta Physica Sinica, 2013, 62(10): 10890201-10890206.)
[19] Seidman S B.Network Structure and Minimum Degree[J]. Social Networks, 1983, 5(3): 269-287.
[20] 宗刚, 赵晓东. 基于K-核分析的中国啤酒品牌二分网络结构研究[J]. 北京工业大学学报, 2013, 39(6): 936-940.
[20] (Zong Gang, Zhao Xiaodong.Construction of Boolean Bipartite Network for Chinese Beer Brands Based on K-Core Analysis[J]. Journal of Beijing University of Technology, 2013, 39(6): 936-940.)
[1] Gao Yilin,Min Chao. Comparing Technology Diffusion Structure of China and the U.S. to Countries Along the Belt and Road[J]. 数据分析与知识发现, 2021, 5(6): 80-92.
[2] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[3] Peng Guan,Yuefen Wang. Advances in Patent Network[J]. 数据分析与知识发现, 2020, 4(1): 26-39.
[4] Chen Fen,Fu Xi,He Yuan,Xue Chunxiang. Identifying Weibo Opinion Leaders with Social Network Analysis and Influence Diffusion Model[J]. 数据分析与知识发现, 2018, 2(12): 60-67.
[5] Wang Zhongyi,Zhang Heming,Huang Jing,Li Chunya. Studying Knowledge Dissemination of Online Q&A Community with Social Network Analysis[J]. 数据分析与知识发现, 2018, 2(11): 80-94.
[6] Li Fei,Zhang Jian,Wang Zongshui. Review of Social Recommendation with Bibliometrics and Social Network Analysis[J]. 数据分析与知识发现, 2017, 1(6): 22-35.
[7] Wang Xiwei,Zhang Liu,Li Shimeng,Wang Nan’axue. The Dissemination of Online Public Opinion on Social Welfare Issues via New Media: Case Study of “Draw up the Lifeline” in Sina Weibo[J]. 数据分析与知识发现, 2017, 1(6): 93-101.
[8] Fan Ruxia,Zeng Jianxun,Gao Yaruixi. Recognizing Dynamic Academic Impacts of Scholars Based on Cooperative Network[J]. 数据分析与知识发现, 2017, 1(4): 30-37.
[9] Wang Yuefen,Jin Jialin. Characteristics and Development Trends of Papers from “New Technology of Library and Information Service”[J]. 现代图书情报技术, 2016, 32(9): 1-16.
[10] Wu Yingliang, Yao Huaidong, Li Cheng'an. An Improved Collaborative Filtering Recommendation Algorithm with Indirect Trust Relationship[J]. 现代图书情报技术, 2015, 31(9): 38-45.
[11] Ren Ni, Zhou Jiannong. The Discovery and Evaluation of Research Team Under the Mode of Weighted Co-Author Network[J]. 现代图书情报技术, 2015, 31(9): 68-75.
[12] Tan Min, Xu Xin. The Empirical Study of h-Degree in Recommendation Network of Academic Blogs——Taking Blogs as an Example[J]. 现代图书情报技术, 2015, 31(7-8): 31-36.
[13] Huang Wei, Gao Junfeng, Li Rui, Zhou Shanshan. Research on Semantic Distance Measurement and Visualization of Tags in Folksonomy[J]. 现代图书情报技术, 2014, 30(7): 64-70.
[14] Huang Wei, Gao Junfeng, Wang Chen, Qi Yue. Research on a Method of Implicit Knowledge Push Service Based on Social Network Analysis[J]. 现代图书情报技术, 2014, 30(2): 48-54.
[15] Zhou Shanshan, Bi Qiang, Gao Junfeng. A Method of Information Retrieval Results Visualization Based on Social Network Analysis[J]. 现代图书情报技术, 2013, 29(11): 81-85.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938