|
|
Personalized Recommendation Algorithm Based on Modified Tensor Decomposition Model |
Chen Meimei( ), Xue Kangjie |
Glorious Sun School of Business & Management, Donghua University, Shanghai 200051, China |
|
|
Abstract [Objective] This paper tries to improve the prediction accuracy of personalized recommendation algorithm based on the tensor decomposition model. [Methods] First, we proposed a new tensor model using spectral clustering technique based on combined tag co-occurrence. Second, we established a penalty scheme on popular tag and resource co-occurrence with the help of IDF in TF-IDF. Finally,we re-defined the initial tensor on the triplets of user, tag cluster, and resource. [Results] We examined the proposed model with dataset from Last.fm and found its precision, recall and F1 measure outperformed other algorithms. The F1 measures were increased by 5.91% and 1.29% thanks to the two proposed modifictions based on clustering and IDF. [Limitations] The proposed algorithm should be further evaluated with datasets from Weibo, Delicious, and other resources. [Conclusions] The new algorithm based on advanced tensor decomposition model could significantly improve the accuracy of resources recommendation to satisfy social network system users’ information needs.
|
Received: 10 November 2016
Published: 25 September 1985
|
|
[1] |
Moens M F, Li J, Chua T S.Mining User Generated Content[M]. CRC Press, 2014: 7-9.
|
[2] |
Marinho L B, Nanopoulos A, Schmidt-Thieme L, et al.Social Tagging Recommender Systems[M]. USA: Springer US, 2011: 615-644.
|
[3] |
Hitchcock F L.The Expression of a Tensor or a Polyadic as a Sum of Products[J]. Journal of Mathematics & Physics, 1927, 6(1): 164-189.
doi: 10.1002/sapm192761164
|
[4] |
Symeonidis P, Nanopoulos A, Manolopoulos Y.Tag Recommendations Based on Tensor Dimensionality Reduction[C]//Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Switzerland. ACM, 2008: 43-50.
|
[5] |
廖志芳, 王超群, 李小庆, 等. 张量分解的标签推荐及新用户标签推荐算法[J]. 小型微型计算机系统, 2013, 34(11): 2472-2476.
doi: 10.3969/j.issn.1000-1220.2013.11.011
|
[5] |
(Liao Zhifang, Wang Chaoqun, Li Xiaoqing, et al.Tag Recommendation and New User Tag Recommendation Algorithms Based on Tensor Decomposition[J]. Journal of Chinese Computer Systems, 2013, 34(11): 2472-2476.)
doi: 10.3969/j.issn.1000-1220.2013.11.011
|
[6] |
Rendle S, BalbyMarinho L, Nanopoulos A, et al. Learning Optimal Ranking with Tensor Factorization for Tag Recommendation[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2009: 727-736.
|
[7] |
武慧娟, 徐宝祥, 王艳艳. 基于张量分解的个性化信息推荐方法优化研究[J]. 情报科学, 2014, 32(6): 134-137.
|
[7] |
(Wu Huijuan, Xu Baoxiang, Wang Yanyan.Optimization Research of Personalized Tag Recommendation Method Based on Tensor Decomposition[J]. Information Science, 2014, 32(6): 134-137.)
|
[8] |
Celma S, Cano P.From Hits to Niches? or How Popular Artists Can Bias Music Recommendation and Discovery[C]// Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition, Las Vegas, Nevada. ACM, 2008: 1-8.
|
[9] |
Salton G, Buckley C.Term-weighting Approaches in Automatic Text Retrieval[J]. Information Processing & Management an International Journal, 1988, 24(5): 513-523.
doi: 10.1016/0306-4573(88)90021-0
|
[10] |
Fleder D, Hosanagar K.Blockbuster Culture’s Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity[J]. Management Science, 2007, 55(5): 697-712.
|
[11] |
王成, 朱志刚, 张玉侠, 等. 基于用户的协同过滤算法的推荐效率和个性化改进[J]. 小型微型计算机系统, 2016, 37(3): 428-432.
|
[11] |
(Wang Cheng, Zhu Zhigang, Zhang Yuxia, et al.Improvement in Recommendation Efficiency and Personalized of User-based Collaborative Filtering Algorithm[J]. Journal of Chinese Computer Systems, 2016, 37(3): 428-432.)
|
[12] |
Cantador I, Bellogín A, Vallet D.Content-based Recommendation in Social Tagging Systems[C]// Proceedings of the 4th ACM Conference on Recommender Systems, Barcelona, Spain. ACM, 2010: 237-240.
|
[13] |
项亮. 推荐系统实践[M]. 人民邮电出版社, 2012: 107-108.
|
[13] |
(Xiang Liang.Practice of Recommendation System[M]. Posts & Telecom Press, 2012: 107-108.)
|
[14] |
Rafailidis D, Daras P.The TFC Model: Tensor Factorization and Tag Clustering for Item Recommendation in Social Tagging Systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(3): 673-688.
doi: 10.1109/TSMCA.2012.2208186
|
[15] |
Gemmell J, Ramezani M, Schimoler T, et al.The Impact of Ambiguity and Redundancy on Tag Recommendation in Folksonomies[C]//Proceedings of the 3rd ACM Conference on Recommender Systems, New York. ACM, 2009: 45-52.
|
[16] |
Leginus M, Dolog P, Žemaitis V.Improving Tensor Based Recommenders with Clustering[C]//Proceedings of the 20th International Conference on User Modeling, Adaptation, and Personalization, Montreal, Canada. Springer-Verlag, 2012: 151-163.
|
[17] |
Symeonidis P.ClustHOSVD: Item Recommendation by Combining Semantically Enhanced Tag Clustering with Tensor HOSVD[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 46(9): 1-12.
doi: 10.1109/TSMC.2015.2482458
|
[18] |
Shepitsen A, Gemmell J, Mobasher B, et al.Personalized Recommendation in Social Tagging Systems Using Hierarchical Clustering[C]//Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Switzerland. ACM, 2008: 259-266.
|
[19] |
Li H, Hu X, Lin Y, et al.A Social Tag Clustering Method Based on Common Co-occurrence Group Similarity[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(2): 122-134.
doi: 10.1631/FITEE.1500187
|
[20] |
李瑞敏, 林鸿飞, 闫俊. 基于用户-标签-项目语义挖掘的个性化音乐推荐[J]. 计算机研究与发展, 2014, 51(10): 2270-2276.
doi: 10.7544/issn1000-1239.2014.20130342
|
[20] |
(Li Ruimin, Lin Hongfei, Yan Jun.Mining Latent Semantic on User-Tag-Item for Personalized Music Recommendation[J]. Journal of Computer Research and Development, 2014, 51(10): 2270-2276.)
doi: 10.7544/issn1000-1239.2014.20130342
|
[21] |
Symeonidis P, Nanopoulos A, Manolopoulos Y.A Unified Framework for Providing Recommendations in Social Tagging Systems Based on Ternary Semantic Analysis[J]. IEEE Transactions on Knowledge & Data Engineering, 2010, 22(2): 179-192.
doi: 10.1109/TKDE.2009.85
|
[22] |
Lathauwer L D, Moor B D, Vandewalle J.On the Best Rank-1 and Rank-(R1, R2,…, RN) Approximation of Higher-Order Tensors[J]. Siam Journal on Matrix Analysis & Applications, 2000, 21(4): 1324-1342.
|
[23] |
Kolda T G, Bader B W.Tensor Decompositions and Applications[J]. College & Research Libraries, 2005, 66(4): 294-310.
|
[24] |
Pazzani M, Billsus D.Learning and Revising User Profiles: The Identification of Interesting Web Sites[J]. Machine Learning, 1997, 27(3): 313-331.
doi: 10.1023/A:1007369909943
|
[25] |
White S, Smyth P.A Spectral Clustering Approach to Finding Communities in Graph[C]//Proceedings of the 2005 SIAM International Conference on Data Mining, Newport Beach, CA, USA. SIAM, 2005: 274-285.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|