Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (6): 93-101    DOI: 10.11925/infotech.2096-3467.2017.06.10
Orginal Article Current Issue | Archive | Adv Search |
The Dissemination of Online Public Opinion on Social Welfare Issues via New Media: Case Study of “Draw up the Lifeline” in Sina Weibo
Wang Xiwei1,2, Zhang Liu1(), Li Shimeng1, Wang Nan’axue1
1School of Management, Jilin University, Changchun 130022, China
2Research Center for Big Data Management, Jilin University, Changchun 130022, China
Download: PDF (2616 KB)   HTML ( 3
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] The paper aims to help the government administrate online public opinion and social media profiles more effectively. [Methods] First, we retrieved data on the topic of “Draw up the Lifeline” from Sina Weibo. Then, we used centrality, cluster and K-core indicators to analyze the network structure and dissemination patterns of public opinion with new media. [Results] We found that online public opinion is disseminated through a scale-free network, and all communities had similar structures. The core network was relatively close but widely distributed, and the mobile technology played some major roles. [Limitations] The collected data was not comprehensive and the inactive users were not removed, which might generate some biased results. [Conclusions] This paper provides some new perspectives to research on social welfare movements. It also lists some practical guides to regulate online public opinion.

Key wordsNew Media      Social Public Welfare      Network Public Opinion      Information Dissemination      Social Network Analysis     
Received: 11 April 2017      Published: 25 August 2017
ZTFLH:  G350  

Cite this article:

Wang Xiwei,Zhang Liu,Li Shimeng,Wang Nan’axue. The Dissemination of Online Public Opinion on Social Welfare Issues via New Media: Case Study of “Draw up the Lifeline” in Sina Weibo. Data Analysis and Knowledge Discovery, 2017, 1(6): 93-101.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2017.06.10     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2017/V1/I6/93

序号 移动端 非移动端
ID 出度 入度 ID 出度 入度
1 苏芒 708 0 708 苏芒 101 0 101
2 污里抖正经人 302 1 303 Johnny黄景瑜 47 0 47
3 流泪咬番茄 263 0 263 冯建宇DTX 23 0 23
4 冯建宇DTX 208 0 208 流泪咬番茄 22 0 22
5 Johnny黄景瑜 207 0 207 污里抖正经人 20 0 20
6 黄子韬吧PreciousZTaoBar 140 0 140 景瑜全球最帅网投站助理 16 0 16
7 景瑜全球最帅网投站助理 108 1 109 黄景瑜全国粉丝后援会官博 9 0 9
8 刘亦菲吧官方 61 0 61 SASAHJY 6 3 9
9 cj的长玉木 50 1 51 瑜若有洲_金碧辉煌 8 0 8
10 唐嫣粉丝团地盘 50 0 50 黄子韬吧PreciousZTaoBar 6 0 6
序号 移动端 非移动端
ID 中间
中心度
ID 中间
中心度
1 潘多拉Q3Q 258 苏芒 17
2 污里抖正经人 256 Johnny黄景瑜 9
3 我试图逆转时间 224 冯建宇DTX 8
4 景瑜全球最帅网投
站助理
126 流泪咬番茄 4
5 希望能陪青宇很久 125 污里抖正经人 3
6 狼君DD 106 景瑜全球最帅
网投站助理
2
7 黄景瑜全国粉丝后
援会官博
97 黄景瑜全国粉
丝后援会官博
2
8 随遇而安_ABan 82 SASAHJY 1
9 学好解剖的SK 73 瑜若有洲_金碧
辉煌
1
10 黄子韬全球后援会 72 不止十年--YQ 1
序号 移动端 非移动端
ID 接近
中心度
ID 接近
中心度
1 青宇把妖精放了 4.4 光年是距离单位 2.5
2 SwaggyTER 3.8 北堂中TWO 2.0
3 青宇--十年 3.8 筱晨晨Honey 2.0
4 宇宇宇宇宇青青 3.8 沁沁sod蜜_送你
们三千五百多玫瑰
2.0
5 璃璃梨梨 3.7 鲸鱼黄鲸鱼 1.8
6 姗姗的宇宇呢
DTX
3.6 Karlin_11198 1.8
7 萌小孩聪酱 3.1 冬冬love鲸鱼 1.8
8 云翼无风 3.1 十年爱漫漫 1.8
9 不止十年--YQ 3.0 放逐遗失 1.8
10 李木木子夕LmX 2.9 青宇家的megane 1.7
聚类 节点 网络直径 图密度 平均聚类系数 平均路径长度 度分布
Cluster #1 398 437 3 0.003 0.012 1.096 y=0.077x-1.00 R2 = 0.624
Cluster #2 1 165 530 6 0.002 0.005 1.795 y= 0.175x-1.85 R2 = 0.841
Cluster #3 230 27 2 0.001 0.001 1.037 y = x-2.49 R2 = 1
节点 入度 出度
苏芒 0 210 210
冯建宇DTX 0 61 61
Johnny黄景瑜 0 27 27
流泪咬番茄 0 24 24
黄景瑜工作室 0 21 21
黄子韬吧PreciousZTaoBar 0 14 14
节点 入度 出度
刘亦菲吧官方 1 36 37
黄子韬全球后援会 2 16 18
学好解剖的SK 2 14 14
鲸鸿_黄景瑜粉丝后援团 2 13 15
潘多拉Q3Q 2 8 10
节点 入度 出度
黄子韬C-POP-特能苏 2 0 2
青宇正教是王道AQY 1 0 1
青宇家茉茉MoMo_闭关考研 1 1 2
三年3班3号C-POP 1 0 1
思念青宇 0 2 2
慕爷 2 0 2
K 节点数 边数 平均度 图密度 连通块数
3 203 612 3.015 0.015 3
4 67 231 3.448 0.052 1
[1] Rosenkrantz A B, Hawkins C M.Use of Twitter Polls to Determine Public Opinion Regarding Content Presented at a Major National Specialty Society Meeting[J]. Journal of the American College of Radiology, 2016, 14(2): 177-182.
doi: 10.1016/j.jacr.2016.07.024 pmid: 27687748
[2] Ortigosa A, Martin J M, Carro R M.Sentiment Analysis in Facebook and Its Application to E-learning[J]. Computers in Human Behavior, 2014, 31(1): 527-541.
doi: 10.1016/j.chb.2013.05.024
[3] Gonzalezbailon S, Paltoglou G.Signals of Public Opinion in Online Communication: A Comparison of Methods and Data Sources[J]. The Annals of the American Academy of Political and Social Science, 2015, 659(1): 95-107.
doi: 10.1177/0002716215569192
[4] 杜阿宁. 互联网舆情信息挖掘方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.
[4] (Du A’ning.Public Opinion Mining on the Internet[D]. Harbin: Harbin Institute of Technology, 2007.)
[5] 魏超. 新媒体技术发展对网络舆情信息工作的影响研究[J]. 图书情报工作, 2014, 58(1): 30-34.
[5] (Wei Chao.Study on the Impact of New Media Technology Development on Internet Public Opinion Information Work[J]. Library and Information Service, 2014, 58(1): 30-34.)
[6] 廖海涵, 王曰芬. 社交媒体舆情信息传播效果影响因素研究——以新浪微博“8.12天津爆炸”事件为例[J]. 现代图书情报技术, 2016(12): 85-93.
[6] (Liao Haihan, Wang Yuefen.Public Opinion Dissenmination over Social Media: Case Study of Sina Weibo and “8.12 Tianjin Explosion”[J]. New Technology of Library and Information Service, 2016(12): 85-93.)
[7] 陈璟浩, 李纲. 突发社会安全事件网络舆情演化的生存分析——基于70起重大社会安全事件的分析[J]. 情报杂志, 2016, 35(4): 70-74.
doi: 10.3969/j.issn.1002-1965.2016.04.014
[7] (Chen Jinghao, Li Gang.A Survival Analysis of Network Public Opinion Evolution in Social Security Emergency—Based on 70 Major Social Security Emergencies Analysis[J]. Journal of Intelligence, 2016, 35(4): 70-74.)
doi: 10.3969/j.issn.1002-1965.2016.04.014
[8] 何跃, 邓姝颖, 马玉凤, 等.突发事件中微博用户社群舆情传播特征研究[J]. 情报科学, 2016, 34(6): 14-18.
[8] (He Yue, Deng Shuying, Ma Yufeng, et al.Analysis on Microblog Users’ Community Discovery and Communication Features in Public Emergency[J]. Information Science, 2016, 34(6): 14-18.)
[9] 曾润喜. 网络舆情信息资源共享研究[J]. 情报杂志, 2009, 28(8): 187-191.
[9] (Zeng Runxi.Research on Information Resource Sharing of Network Opinion[J]. Journal of Intelligence, 2009, 28(8): 187-191.)
[10] 李兰. 新形势下公共危机事件网络舆情应对分析[D]. 武汉: 华中科技大学, 2015.
[10] (Li Lan.The Analysis of Public Opinion Management on Public Crisis Events of New Condition[D]. Wuhan: Huazhong University of Science & Technology, 2015.)
[11] 李培铭. 传统媒体与新媒体有效融合的途径分析[J]. 新媒体研究, 2016, 2(10): 62-63.
[11] (Li Peiming.The Effective Ensemble Method of the Traditional Media and the New Media[J]. New Media Research, 2016, 2(10): 62-63.)
[12] González M A.Opinión Pública Y Web 2.0. Las Redes Digitalizan El Barómetro Político En España[J]. Revista Mexicana De Opinión Pública, 2016, 21: 95-113.
[13] Heinrich T, Kobayashi Y, Bryant K A.Public Opinion and Foreign Aid Cuts in Economic Crises[J]. World Development, 2016, 77: 66-79.
doi: 10.1016/j.worlddev.2015.08.005
[14] 裴雷, 马费成. 社会网络分析在情报学中的应用和发展[J]. 图书馆论坛, 2006, 26(6): 40-45.
[14] (Pei Lei, Ma Feicheng.The Application of Social Network Analysis (SNA) in Information Science[J]. Library Tribune, 2006, 26(6): 40-45.)
[15] Molano S, Polo A.Social Network Analysis in a Learning Community[J]. Procedia-Social and Behavioral Sciences, 2015, 185: 339-345.
doi: 10.1016/j.sbspro.2015.03.381
[16] Senghore F, Campos-Nanez E, Fomin P, et al.Using Social Network Analysis to Investigate the Potential of Innovation Networks: Lessons Learned from NASA’s International Space Apps Challenge[J]. Procedia Computer Science, 2014, 28: 380-388.
doi: 10.1016/j.procs.2014.03.047
[17] 雷辉, 聂珊珊, 黄小宝, 等. 基于社会网络分析的网络传播主体行为特征研究[J]. 情报杂志, 2015, 34(1): 161-168.
[17] (Lei Hui, Nie Shanshan, Huang Xiaobao, et al.The Behavior Characteristics of Network Disseminators: An Empirical Study Based on Social Network Anaysis[J]. Journal of Intelligence, 2015, 34(1): 161-168.)
[18] 王国华, 魏程瑞, 钟声扬, 等. 微博意见领袖的网络媒介权力之量化解读及特征研究——基于社会网络分析的视角[J]. 情报杂志, 2015, 34(7): 117-124.
doi: 10.3969/j.issn.1002-1965.2015.07.022
[18] (Wang Guohua, Wei Chengrui, Zhong Shengyang, et al.A Quantitative Interpretation and Characteristics Study of Microblog Opinion Leader’s Network Media Power—A Perspective of Social Network Analysis[J]. Journal of Intelligence, 2015, 34(7): 117-124.)
doi: 10.3969/j.issn.1002-1965.2015.07.022
[19] 滕广青, 贺德方, 彭洁, 等. 基于网络中心性的领域知识动态演化研究[J]. 图书情报工作, 2016, 60(14): 128-134.
doi: 10.13266/j.issn.0252-3116.2016.14.016
[19] (Teng Guangqing, He Defang, Peng Jie, et al.Research on the Dynamic Evolution of Domain Knowledge Based on the Network Centrality[J]. Library and Information Service, 2016, 60(14): 128-134.)
doi: 10.13266/j.issn.0252-3116.2016.14.016
[20] 张顺龙, 库涛, 周浩. 针对多聚类中心大数据集的加速K-means聚类算法[J]. 计算机应用研究, 2016, 33(2): 413-416.
doi: 10.3969/j.issn.1001-3695.2016.02.021
[20] (Zhang Shunlong, Ku Tao, Zhou Hao.Accelerate K-means for Multi-center Clustering of Big Datasets[J]. Application Research of Computers, 2016, 33(2): 413-416.)
doi: 10.3969/j.issn.1001-3695.2016.02.021
[21] 白林根, 谌志群, 王荣波, 等. 微博关注关系网络K-核结构实证分析[J]. 现代图书情报技术, 2013(11): 68-74.
[21] (Bai Lin’gen, Chen Zhiqun, Wang Rongbo, et al.Empirical Analysis on K-core of Microblog Following Relationship Network[J]. New Technology of Library and Information Service, 2013(11): 68-74.)
[22] 王海迪. 新媒体时代微博公益传播认同塑造的机制研究[J]. 西部学刊, 2016(16): 58-61.
[22] (Wang Haidi.A Survey on the Mechanism of Modeling Identification through the Weibo Public Welfare’s Propogation in New Media Epoch[J]. Journal of Western, 2016(16): 58-61.)
[23] 陈萌. 对我国微博公益平台的思考[J]. 新闻世界, 2012(2): 52-53.
[23] (Chen Meng.The Consideration Towards Weibo Public Platform in China[J]. News World, 2012(2): 52-53.)
[1] Ma Yingxue,Zhao Jichang. Patterns and Evolution of Public Opinion on Weibo During Natural Disasters: Case Study of Typhoons and Rainstorms[J]. 数据分析与知识发现, 2021, 5(6): 66-79.
[2] Gao Yilin,Min Chao. Comparing Technology Diffusion Structure of China and the U.S. to Countries Along the Belt and Road[J]. 数据分析与知识发现, 2021, 5(6): 80-92.
[3] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[4] Zhang Yipeng,Ma Jingdong. Analyzing Sentiments and Dissemination of Misinformation on Public Health Emergency[J]. 数据分析与知识发现, 2020, 4(12): 45-54.
[5] Peng Guan,Yuefen Wang. Advances in Patent Network[J]. 数据分析与知识发现, 2020, 4(1): 26-39.
[6] Chen Fen,Fu Xi,He Yuan,Xue Chunxiang. Identifying Weibo Opinion Leaders with Social Network Analysis and Influence Diffusion Model[J]. 数据分析与知识发现, 2018, 2(12): 60-67.
[7] Wang Zhongyi,Zhang Heming,Huang Jing,Li Chunya. Studying Knowledge Dissemination of Online Q&A Community with Social Network Analysis[J]. 数据分析与知识发现, 2018, 2(11): 80-94.
[8] Li Zhen,Ding Shengchun,Wang Nan. Identifying Topics of Online Public Opinion[J]. 数据分析与知识发现, 2017, 1(8): 18-30.
[9] Li Fei,Zhang Jian,Wang Zongshui. Review of Social Recommendation with Bibliometrics and Social Network Analysis[J]. 数据分析与知识发现, 2017, 1(6): 22-35.
[10] Fan Ruxia,Zeng Jianxun,Gao Yaruixi. Recognizing Dynamic Academic Impacts of Scholars Based on Cooperative Network[J]. 数据分析与知识发现, 2017, 1(4): 30-37.
[11] Wang Yuefen,Jin Jialin. Characteristics and Development Trends of Papers from “New Technology of Library and Information Service”[J]. 现代图书情报技术, 2016, 32(9): 1-16.
[12] Wu Huijuan,Jia Tina Du,Sun Hongfei,Jannatul Fardous. Identifying Core Users in Social Resource Recommendation System with K-shell Collapse Sequences[J]. 现代图书情报技术, 2016, 32(9): 58-64.
[13] Haihan Liao, Yuefen Wang. Public Opinion Dissemination over Social Media: Case Study of Sina Weibo and “8.12 Tianjin Explosion”[J]. 数据分析与知识发现, 2016, 32(12): 85-93.
[14] Wu Yingliang, Yao Huaidong, Li Cheng'an. An Improved Collaborative Filtering Recommendation Algorithm with Indirect Trust Relationship[J]. 现代图书情报技术, 2015, 31(9): 38-45.
[15] Ren Ni, Zhou Jiannong. The Discovery and Evaluation of Research Team Under the Mode of Weighted Co-Author Network[J]. 现代图书情报技术, 2015, 31(9): 68-75.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn