|
|
Identifying User Interests Based on Browsing Behaviors |
Liu Hongwei1, Gao Hongming1, Chen Li2( ), Zhan Mingjun1, Liang Zhouyang1 |
1(School of Management, Guangdong University of Technology, Guangzhou 510520, China) 2(Guangdong Youth Vocational College, Guangzhou 510507, China) |
|
|
Abstract [Objective] This paper proposes a model to identify the interests of online shoppers based on their browsing behaviors, aiming to improve the personalized recommendation services. [Methods] First, we launched experiment to collect clickstream data from Taobao and TMall. Second, we used the Bisecting K-means algorithm to analyze the retrieved data. Finally, we established the relationship mapping structure between interests and behaviors. [Results] We found four types of user’s implicit interests: Attention, Comprehension, Attitudes and Intention. Users with the Attitude and Intention types tended to make purchase. The characteristics of browsing paths were different among the users. [Limitations] We did not examine unstructured data, i.e., online sales advertisements, in this study. [Conclusions] This paper investigates the user interests in online shopping, and then improve the personalized recommendation services of the E-commerce platforms.
|
Received: 01 September 2017
Published: 07 March 2018
|
|
[1] |
戴德宝, 刘西洋, 范体军. “互联网+”时代网络个性化推荐采纳意愿影响因素研究[J]. 中国软科学, 2015(8): 163-172.
|
[1] |
(Dai Debao, Liu Xiyang, Fan Tijun.Research on the Adoption Intention of Online Personalized Recommender in the Internet Plus Era[J]. China Soft Science, 2015(8): 163-172.)
|
[2] |
Ding A W, Li S, Chatterjee P.Learning User Real-Time Intent for Optimal Dynamic Web Page Transformation[J]. Information Systems Research, 2015, 26(2): 339-359.
doi: 10.1287/isre.2015.0568
|
[3] |
Rana C, Jain S K.A Study of the Dynamic Features of Recommender Systems[J]. Artificial Intelligence Review, 2015, 43(1): 141-153.
doi: 10.1007/s10462-012-9359-6
|
[4] |
Mladenic D.Text-Learning and Related Intelligent Agents: A Survey[J]. IEEE Intelligent Systems & Their Applications, 2002, 14(4): 44-54.
doi: 10.1109/5254.784084
|
[5] |
Chu W, Park S T.Personalized Recommendation on Dynamic Content Using Predictive Bilinear Models[C]//Procedings of the 18th International Conference on World Wide Web, Madrid, Spain. New York, NY, USA: ACM, 2009: 691-700.
|
[6] |
Burke R.Hybrid Web Recommender Systems [A]// The Adaptive Web: Methods and Strategies of Web Personalization, Lecture Notes in Computer Science[M]. Springer, 2007: 377-408.
|
[7] |
Kardan A A, Ebrahimi M.A Novel Approach to Hybrid Recommendation Systems Based on Association Rules Mining for Content Recommendation in Asynchronous Discussion Groups[J]. Information Sciences, 2013, 219: 93-110.
doi: 10.1016/j.ins.2012.07.011
|
[8] |
Li C, Jiang Z.A Hybrid News Recommendation Algorithm Based on User’s Browsing Path[C]// Procedings of the IEEE/ACIS International Conference on Computer and Information Science, Okayama, Japan. IEEE, 2016: 1-4.
|
[9] |
张奇. 天猫推荐算法实践 [EB/OL]. (2014-06-22). [2017- 07-10]. .
|
[9] |
(Zhang Qi. Recommendation of TMall [EB/OL]. (2014-06-22). [2017-07-10].
|
[10] |
Shang M S, Chen G X, Dai S X, et al.Interest-Driven Model for Human Dynamics[J]. Chinese Physics Letters, 2010, 27(4): 48701-48703.
doi: 10.1088/0256-307X/27/4/048701
|
[11] |
Barabási A L.The Origin of Bursts and Heavy Tails in Human Dynamics[J]. Nature, 2005, 435(7039): 207-211.
doi: 10.1038/nature03459
pmid: 15889093
|
[12] |
Zhao Z D, Yang Z, Zhang Z, et al. Emergence of Scaling in Human-Interest Dynamics [J]. Scientific Reports, 2013, 3(12). Article No.: 3472
doi: 10.1038/srep03472
pmid: 3858797
|
[13] |
Han X P, Zhou T, Wang B H.Modeling Human Dynamics with Adaptive Interest[J]. New Journal of Physics, 2007, 10(7): 1983-1989.
doi: 10.1088/1367-2630/10/7/073010
|
[14] |
Estrin D. Small Data, Where n = me[J]. Communications of the ACM, 2014, 57(4): 32-34.
|
[15] |
Zahoor S, Bedekar M, Kosamkar P K.User Implicit Interest Indicators Learned from the Browser on the Client Side[C]//Proceedings of International Conference on Information and Communication Technology for Competitive Strategies. ACM, 2014.
|
[16] |
Claypool M, Le P, Wased M, et al.Implicit Interest Indicators[C]//Proceedings of the 6th International Conference on Intelligent User Interfaces, New Mexico, USA. New York, NY, USA: ACM, 2000: 33-40.
|
[17] |
崔春生. 基于隐式浏览输入的用户聚类分析[J]. 计算机应用研究, 2011, 28(8): 2862-2864.
doi: 10.3969/j.issn.1001-3695.2011.08.017
|
[17] |
(Cui Chunsheng.User Clustering Analysis Based on Implicit Navigation[J]. Application Research of Computers, 2011, 28(8): 2862-2864.)
doi: 10.3969/j.issn.1001-3695.2011.08.017
|
[18] |
Lieberman H.Letizia: An Agent That Assists Web Browsing[C]//Proceedings of the 14th International Joint Conference on Artificial Intelligence.1995, 1: 924-929.
|
[19] |
Kuo R J, Liao J L, Tu C.Integration of ART2 Neural Network and Genetic K-means Algorithm for Analyzing Web Browsing Paths in Electronic Commerce[J]. Decision Support Systems, 2005, 40(2): 355-374.
doi: 10.1016/j.dss.2004.04.010
|
[20] |
Jayawardhena C, Dennis C, Wright L T.Consumers Online: Intentions, Orientations and Segmentation[J]. International Journal of Retail & Distribution Management, 2007, 35(6): 515-526.
doi: 10.1108/09590550710750377
|
[21] |
朱志国. 基于隐马尔可夫链模型的电子商务用户兴趣导航模式发现[J]. 中国管理科学, 2014, 22(4): 67-73.
|
[21] |
(Zhu Zhiguo.Discovery of E-Commerce Users’ Interest Navigation Patterns Based on Hidden Markov Chains Model[J].Chinese Journal of Management Science, 2014, 22(4): 67-73.)
|
[22] |
付关友, 朱征宇. 个性化服务中基于行为分析的用户兴趣建模[J]. 计算机工程与科学, 2005, 27(12): 76-78.
doi: 10.3969/j.issn.1007-130X.2005.12.026
|
[22] |
(Fu Guanyou, Zhu Zhengyu.A User Interest Modele Based on the Analysis of User Behaviors for Personalization[J]. Computer Engineering & Science, 2005, 27(12): 76-78.)
doi: 10.3969/j.issn.1007-130X.2005.12.026
|
[23] |
Li B, Sun B, Montgomery A L.Cross-Selling the Right Product to the Right Customer at the Right Time[J]. Journal of Marketing Research, 2011, 48(4): 683-700.
doi: 10.2307/23033447
|
[24] |
Machleit K A, Allen C T, Madden T J.The Mature Brand and Brand Interest: An Alternative Consequence of Ad-Evoked Affect[J]. Journal of Marketing, 1993, 57(4): 72-82.
doi: 10.2307/1252220
|
[25] |
Duan W J, Gu B, Whinston A B.The Dynamics of Online Word-Of-Mouth and Product Sales — An Empirical Investigation of the Movie Industry[J]. Journal of Retailing, 2008, 84(2): 233-242.
doi: 10.1016/j.jretai.2008.04.005
|
[26] |
Moe W W.Buying, Searching, or Browsing: Differentiating Between Online Shoppers Using In-Store Navigational Clickstream[J]. Journal of Consumer Psychology, 2003, 13(1): 29-39.
doi: 10.1207/S15327663JCP13-1&2_03
|
[27] |
Montgomery A L, Li S, Srinivasan K, et al.Modeling Online Browsing and Path Analysis Using Clickstream Data[J]. Marketing Science, 2004, 23(4): 579-595.
doi: 10.1287/mksc.1040.0073
|
[28] |
Howard J A, Sheth J N.The Theory of Buyer Behavior[M]. New York: Wiley, 1969: 421-449.
|
[29] |
MacQueen J. Some Methods for Classification and Analysis of MultiVariate Observations[C]// Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967: 281-297.
|
[30] |
Ball G H, Hall D J.A Clustering Technique for Summarizing Multivariate Data[J]. Systems Research & Behavioral Science, 1967, 12(2): 153-155.
doi: 10.1002/bs.3830120210
pmid: 6030099
|
[31] |
Jain A K.Data Clustering: 50 Years Beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8): 651-666.
doi: 10.1016/j.patrec.2009.09.011
|
[32] |
Steinley D.K-Means Clustering: A Half-Century Synthesis[J]. British Journal of Mathematical and Statistical Psychology, 2006, 59(1): 1-34.
doi: 10.1348/000711005X48266
pmid: 16709277
|
[33] |
Savaresi S M, Boley D L.On the Performance of Bisecting K-Means and PDDP[J]. Intelligent Data Analysis, 2004, 8(4): 345-362.
doi: 10.1137/1.9781611972719.5
|
[34] |
Rousseeuw P.Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis[J]. Journal of Computational & Applied Mathematics, 1987, 20: 53-65.
doi: 10.1016/0377-0427(87)90125-7
|
[35] |
Kodinariya T M, Makwana P R.Review on Determining Number of Cluster in K-means Clustering[J]. International Journal of Advance Research in Computer Science and Management Studies, 2013, 1(6): 90-95.
|
[36] |
Samadi M, Yaghoob-Nejadi A.A Survey of the Effect of Consumers’ Perceived Risk on Purchase Intention in e-Shopping[J]. Business Intelligence Journal, 2009, 2(2): 261-275.
doi: 10.4236/jssm.2015.81012
|
[37] |
Close A G, Kukar-Kinney M.Beyond Buying: Motivations Behind Consumers’ Online Shopping Cart Use[J]. Journal of Business Research, 2010, 63(9): 986-992.
doi: 10.1016/j.jbusres.2009.01.022
|
[38] |
殷晨. 网络促销对消费者冲动性购买行为的影响研究 [D]. 济南: 山东大学, 2013.
|
[38] |
(Yin Chen.Research on the Influence of the Network Promtion on Consumers’ Impluse Buying Behavior[D]. Ji’nan: Shandong University, 2013.)
|
[39] |
Asiegbu I F, Powei D M, Iruka C H.Consumer Attitude: Some Reflections on Its Concept, Trilogy, Relationship with Consumer Behavior, and Marketing Implications[J]. European Journal of Business and Management, 2012, 4(13): 38-50.
|
[40] |
Hawkins D I, Mothersbaugh D L, Best R J.Consumer Behavior: Building Marketing Strategy[M]. McGraw-Hill Irwin, 2013.
|
[41] |
Fishbein M, Ajzen I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research[M]. Addison-Wesley Pub. Co., 1975.
|
[42] |
Bundesen C, Habekost T, Kyllingsbaek S.A Neural Theory of Visual Attention: Bridging Cognition and Neurophysiology[J]. Psychological Review, 2005, 112(2): 291-328.
doi: 10.1037/0033-295X.112.2.291
|
[43] |
Russo J E, Leclerc F.An Eye-Fixation Analysis of Choice Processes for Consumer Nondurables[J]. Journal of Consumer Research, 1994, 21(2): 274-290.
doi: 10.1086/209397
|
[44] |
Clement J.Visual Influence on In-store Buying Decisions: An Eye-Track Experiment on the Visual Influence of Packaging Design[J]. Journal of Marketing Management, 2007, 23(9-10): 917-928.
doi: 10.1362/026725707X250395
|
[45] |
Glaholt M G, Reingold E M.Eye Movement Monitoring as a Process Tracing Methodology in Decision Making Research[J]. Journal of Neuroscience, Psychology, and Economics, 2011, 4(2): 125-146.
doi: 10.1037/a0020692
|
[46] |
Glöckner A, Herbold A K.An Eye‐Tracking Study on Information Processing in Risky Decisions: Evidence for Compensatory Strategies Based on Automatic Processes[J]. Journal of Behavioral Decision Making, 2011, 24(1): 71-98.
doi: 10.1002/bdm.684
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|