|
|
Analyzing Public Opinion from Microblog with Topic Clustering and Sentiment Intensity |
Wang Xiufang, Sheng Shu( ), Lu Yan |
College of Computer of Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China |
|
|
Abstract [Objective] This paper builds a model to monitor the trending topics from microblogs, aiming to deal with the issues of text drifting and quantitation of sentimental polarity. [Methods] First, we proposed a public opinion analysis model based on topic clustering and sentiment intensity. Then, we used the time series regression analysis to predict the sentimental changes among the trending topics. [Results] The prediction accuracy of our model reached 88.97%, which was about 7% higher than the iLab-Edinburgh model. [Limitations] More research is needed to study the early warning mechanisms for emergency events. [Conclusions] The proposed model could improve the prediction accuracy of sentimental changes, which provides an effective way to analyze the public opinion from microblogs.
|
Received: 07 November 2017
Published: 11 July 2018
|
|
[1] |
马晓玲, 金碧漪, 范并思. 中文文本情感倾向分析研究[J]. 情报资料工作, 2013(1): 52-56.
|
[1] |
(Ma Xiaoling, Jin Biyi, Fan Bingsi.An Analysis of Chinese Text Emotional Tendency[J]. Information and Documentation Service, 2013(1): 52-56.)
|
[2] |
Vaibhavi N, Patodkar N P, Shaikh I R.Sentimental Analysis on Twitter Data Using Naive Bayes[C]// Proceedings of the 6th Post Graduate Conference for Computer Engineering. 2017.
|
[3] |
唐晓波, 罗颖利. 融入情感差异和用户兴趣的微博转发预测[J]. 图书情报工作, 2017, 61(9): 102-110.
|
[3] |
(Tang Xiaobo, Luo Yingli.Integrating Emotional Divergence and User Interests into the Prediction of Microblog Retweeting[J]. Library and Information Service, 2017, 61(9): 102-110.)
|
[4] |
Ingle M M, Emmanues M.Evaluations on Sentiment Analysis of Micro Blogging Site Using Topic Modeling[C]// Proceedings of the 2016 International Conference on Signal Processing, Communication, Power and Embedded System. 2016.
|
[5] |
Giatsoglou M, Vozalis M G, Diamantaras K, et al.Sentiment Analysis Leveraging Emotions and Word Embeddings[J]. Expert Systems with Applications, 2017, 69: 214-224.
doi: 10.1016/j.eswa.2016.10.043
|
[6] |
韩忠明, 陈妮, 乐嘉锦, 等. 面向热点话题时间序列的有效聚类算法研究[J]. 计算机学报, 2012, 35(11): 2337-2347.
doi: 10.3724/SP.J.1016.2012.02337
|
[6] |
(Han Zhongming, Chen Ni, Le Jiajin, et al.An Efficient and Effective Clustering Algorithm for Time Series of Hot Topics[J]. Chinese Journal of Computers, 2012, 35(11): 2337-2347.)
doi: 10.3724/SP.J.1016.2012.02337
|
[7] |
吴青林, 周天宏. 基于话题聚类及情感强度的中文微博舆情分析[J]. 情报理论与实践, 2016, 39(1): 109-112.
doi: 10.16353/j.cnki.1000-7490.2016.01.019
|
[7] |
(Wu Qinglin, Zhou Tianhong.Public Opinion Analysis of Chinese Microblog Based on Topic Clustering and Emotion Intensity[J]. Information Studies: Theory & Application, 2016, 39(1): 109-112.)
doi: 10.16353/j.cnki.1000-7490.2016.01.019
|
[8] |
何跃, 肖敏, 张月. 结合话题相关性的热点话题情感倾向研究[J]. 数据分析与知识发现, 2017, 1(3): 46-53.
|
[8] |
(He Yue, Xiao Min, Zhang Yue.Sentiment Analysis of Trending Topics Based on Relevance[J]. Data Analysis and Knowledge Discovery, 2017, 1(3): 46-53.)
|
[9] |
Sotiropoulos D N, Kounavis C D, Kourouthanassis P, et al.What Drives Social Sentiment? An Entropic Measure-based Clustering Approach Towards Identifying Factors that Influence Social Sentiment Polarity[C]// Proceedings of the 5th International Conference on Information, Intelligence, Systems and Applications. 2014.
|
[10] |
Manek A S, Shenoy P D, Mohan M C, et al.Aspect Term Extraction for Sentiment Analysis in Large Movie Reviews Using Gini Index Feature Selection Method and SVM Classifier[J]. World Wide Web, 2017, 20(2): 135-154.
doi: 10.1007/s11280-015-0381-x
|
[11] |
李慧, 柴亚青. 基于属性特征的评论文本情感极性量化分析[J]. 数据分析与知识发现, 2017, 1(10): 1-11.
|
[11] |
(Li Hui, Chai Yaqing.Analysis Sentiment Polarity of Comments Based on Attributes[J]. Data Analysis and Knowledge Discovery, 2017, 1(10): 1-11.)
|
[12] |
Meisheri H, Saha R, Sinha P, et al.Textmining at EmoInt-2017: A Deep Learning Approach to Sentiment Intensity Scoring of English Tweets[C]//Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Copenhagen, Denmark. 2017.
|
[13] |
郑丽娟, 王洪伟, 郭恺强. 基于情感词模糊统计的网络评论情感强度的研究[J]. 系统管理学报, 2014, 23(3): 324-330.
|
[13] |
(Zheng Lijuan, Wang Hongwei, Guo Kaiqiang.Sentiment Intensity of Online Reviews Based on Fuzzy-Statistics of Sentiment Words[J]. Journal of Systems & Management, 2014, 23(3): 324-330.)
|
[14] |
Pérez-Ortiz M, Gutiérrez P A, Carbonero-Ruz M, et al.Semi-supervised Learning for Ordinal Kernel Discriminant Analysis[J]. Neural Networks, 2016, 84: 57-66.
doi: 10.1016/j.neunet.2016.08.004
pmid: 27639724
|
[15] |
周航星, 陈松灿. 有序判别典型相关分析[J]. 软件学报, 2014, 25(9): 2018-2025.
doi: 10.13328/j.cnki.jos.004649
|
[15] |
(Zhou Hangxing, Chen Songcan.Ordinal Discriminative Canonical Correlation Analysis[J]. Journal of Software, 2014, 25(9): 2018-2025.)
doi: 10.13328/j.cnki.jos.004649
|
[16] |
Hotelling H.Relations Between 2 Sets of Variants[J]. Biometrika, 1935, 28(3-4): 312-377.
doi: 10.2307/2333955
|
[17] |
Yoshida K, Yoshimoto J, Doya K.Sparse Kernel Canonical Correlation Analysis for Discovery of Nonlinear Interactions in High-dimensional Data[J]. BMC Bioinformatics, 2017, 18(1): 108-118.
doi: 10.1186/s12859-017-1543-x
pmid: 28196464
|
[18] |
钟敏娟, 万常选, 刘德喜. 基于关联规则挖掘和极性分析的商品评论情感词典构建[J]. 情报学报, 2016, 35(5): 501-509.
|
[18] |
(Zhong Minjuan, Wan Changxuan, Liu Dexi.Opinion Lexicon Construction Based on Association Rule and Orientation Analysis for Production Review[J]. Journal of the China Society for Scientific and Technical Information, 2016, 35(5): 501-509.)
|
[19] |
刘德喜. 情感词扩展对微博情感分类性能影响的实验分析[J]. 小型微型计算机系统, 2016, 37(5): 957-965.
|
[19] |
(Liu Dexi.Effect of Sentimental Word Expansion on the Performance of Microblog Sentiment Classification Task[J]. Journal of Chinese Computer Systems, 2016, 37(5): 957-965.)
|
[20] |
阳林. 情感词权值研究及在情感极性分析中的应用[J]. 计算机应用, 2015, 35(S2): 125-127.
|
[20] |
(Yang Lin.Emotional Term Weight Research and Application to Emotional Polarity Analysis[J]. Journal of Computer Applications, 2015, 35(S2): 125-127.)
|
[21] |
Van Arthur G, Staals F, Löffler M, et al.Multi-Granular Trend Detection for Time-Series Analysis[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(1): 661-670.
doi: 10.1109/TVCG.2016.2598619
|
[22] |
唐晓波, 童海燕, 严承希. 基于话题情感强度的微博舆情分析[J]. 图书馆学研究, 2014(17): 85-93.
|
[22] |
(Tang Xiaobo, Tong Haiyan, Yan Chengxi.Microblogging Public Opinion Analysis Based on Emotional Intensity of the Topic[J]. Research on Libray Science, 2014(17): 85-93.)
|
[23] |
Refaee E, Rieser V. iLab-Edinburgh at SemEval-2016 Task 7: A Hybrid Approach for Determining Sentiment Intensity of Arabic Twitter Phrases[C]// Proceedings of the 10th International Workshop on Semantic Evaluation. 2016.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|