Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (6): 1-12    DOI: 10.11925/infotech.2096-3467.2017.1174
Current Issue | Archive | Adv Search |
Impacts of “Poster-Follower” Sentiment on Stock Market Performance
Zhang Ning, Yin Lemin(), He Lifeng
School of Business, Qingdao University, Qingdao 266071, China
Download: PDF (680 KB)   HTML ( 4
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] The paper investigates the relationship between the “Bullish Sentiment Index” (BSI) of online reviews/following comments and the performance of stock market. [Methods] First, we conducted sentiment classification for comments on Shanghai Stock Exchange Composite Index using semantic analysis method. Then, we built the sentiment tendencies of these reviews and constructed their “Poster-Follower” BSI. Finally, we used linear and nonlinear models to examine the proposed method empirically. [Results] The BSI based on our proposed method (text mining) could effectively predict the stock market trend, especially on its returns. [Limitations] We only consider two emotional polarities and more research is needed to enhance the sentimental strength. [Conclusions] The Bullish Sentiment Index could effectively predict the overall stock market trend by measuring investors’ sentiment.

Key wordsStock Comment      Stock Comment Attention Rate      Text Mining      Investor Sentiment     
Received: 22 November 2017      Published: 11 July 2018
ZTFLH:  G35  

Cite this article:

Zhang Ning,Yin Lemin,He Lifeng. Impacts of “Poster-Follower” Sentiment on Stock Market Performance. Data Analysis and Knowledge Discovery, 2018, 2(6): 1-12.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2017.1174     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2018/V2/I6/1

统计指标 均值 标准差 最大值 最小值
评论标题长度(字) 17.042 5.33 36 2
评论内容长度(字) 363.349 562.503 12875 2
评论关注度(万次) 1.583 13.232 653.984 0.012
每日发帖数量(条) 252.459 207.733 1373 3
每日关注数量(万次) 453.977 446.926 2972.288 7.217
情感倾向 指标 分类效果
看涨 召回率 94.6%
准确率 90.6%
F值 92.7%
看跌 召回率 93.5%
准确率 89.6%
F值 91.5%
均值 标准差 最大值 最小值
每日看涨评论数量(条) 143.00 118.67 889 1
每日看跌评论数量(条) 108.98 111.44 635 2
合成方法
调整方法
加法合成 乘法合成
对数调整 $S{{V}_{la}}=1+\ln (1+n)$ $S{{V}_{lm}}=1\times \ln (e+n)$
比值调整 $S{{V}_{ra}}=1+\frac{n}{\mathop{\sum }^{}n}$ $S{{V}_{rm}}=1\times \frac{n}{\mathop{\sum }^{}n}$
变量性质 变量名称 变量符号 变量描述
被解释变量 当日上证综合指数 CIt 上证综合指数的当日收盘价
当日上证指数收益率 Rt 上证综合指数的当日收益率
解释变量 当日投资者情绪指数 BSIt 基于文本挖掘的“发布者-关注者”当日综合情绪指标
前一日投资者情绪指数 BSIt-1 基于文本挖掘的“发布者-关注者”前一日综合情绪指标
控制变量 波动率 FR 上证市场一个交易日中股票收益的变化程度
换手率 TR 上证市场一个交易日中股票转手买卖的频率
前一日上证综合指数 CIt-1 上证综合指数的前一日收盘价
变量 M1 BSIla BSIlm BSIra BSIrm
M2 M3 M4 M2 M3 M4 M2 M3 M4 M2 M3 M4
系数 系数 系数 系数 系数 系数 系数 系数 系数 系数 系数 系数 系数
(t值) (t值) (t值) (t值) (t值) (t值) (t值) (t值) (t值) (t值) (t值) (t值) (t值)
BSI1t 123.018*** 124.322*** 165.589*** 59.520***
(9.352) (-9.415) (-12.013) (-6.263)
BSI1(t-1) -53.927*** -50.790*** -77.985*** -13.733
(-4.102) (-3.862) (-5.682) (-1.453)
BSI2t 20.055*** 20.661*** 35.956*** 30.154***
(8.104) (-8.26) (-11.506) (-5.69)
BSI2(t-1) -8.395*** -8.212*** -16.845*** -3.138
(3.370) (-3.270) (-5.397) (-0.583)
BSI3t 61.384*** 62.163*** 82.794*** 29.781***
(9.318) (-9.415) (-12.013) (-6.27)
BSI3(t-1) -26.990*** -25.397*** -38.992*** -6.894
(-4.099) (-3.862) (-5.682) (-1.460)
TR 26.038*** 21.900*** 22.794*** 21.784*** 21.702*** 22.785*** 21.703*** 19.940*** 19.532*** 19.940*** 21.871*** 22.477*** 21.871***
(5.323) (5.050) (5.117) (5.013) (-5.034) (-5.159) (-5.034) (-4.94) (-4.726) (-4.94) (-4.744) (-4.802) (-4.745)
FR -18.104*** -16.033*** -16.957*** -16.000*** -15.786*** -16.783*** -15.786*** -14.292*** -14.383*** -14.292*** -16.120*** -15.870*** -16.126***
(-7.202) (-7.269) (-7.486) (-7.241) (-7.161) (-7.440) (-7.161) (-6.974) (-6.868) (-6.974) (-6.775) (-6.496) (-6.780)
CIt-1 0.888*** 0.903*** 0.898*** 0.903*** 0.904*** 0.899*** 0.904*** 0.908*** 0.907*** 0.908*** 0.892*** 0.889*** 0.892***
(48.314) (57.627) (55.295) (57.564) (-57.791) (-55.599) (-57.791) (-62.967) (-61.919) (-62.967) (-52.028) (-51.123) (-52.041)
常数项 306.752*** 223.635*** 275.881*** 258.798*** 219.170*** 272.781*** 255.947*** 198.677*** 246.595*** 242.479*** 270.757*** 302.424*** 293.549***
(5.640) (4.717) (5.741) (5.571) (-4.621) (-5.702) (-5.526) (-4.575) (-5.684) (-5.678) (-5.339) (-5.882) (-5.798)
F 28.539*** 46.424*** 34.778*** 46.118*** 47.255*** 36.252*** 47.257*** 77.309*** 71.110*** 77.309*** 20.208*** 16.323*** 20.258***
R2 0.931 0.951 0.947 0.951 0.951 0.948 0.951 0.959 0.957 0.959 0.941 0.94 0.941
ΔR2 0.931*** 0.020*** 0.016*** 0.020*** 0.020*** 0.016*** 0.020*** 0.028*** 0.026*** 0.028*** 0.010*** 0.009*** 0.010***
变量 M1 BSIla BSIlm BSIra BSIrm
M2 M3 M4 M2 M3 M4 M2 M3 M4 M2 M3 M4
系数 系数 系数 系数 系数 系数 系数 系数 系数 系数 系数 系数 系数
(t值) (t值) (t值) (t值) (t值) (t值) (t值) (t值) (t值) (t值) (t值) (t值) (t值)
BSI1t 4.421*** 4.475*** 5.858*** 2.040***
(9.330) (-9.455) (-11.779) (-5.923)
BSI1(t-1) -1.917*** -1.806*** -2.880*** -0.621
(-4.064) (-3.821) (-5.835) (-1.826)
BSI2t 0.713*** 0.736*** 1.272*** 1.013***
(7.995) (-8.173) (-11.281) (-5.267)
BSI2(t-1) -0.307*** -0.300*** -0.622*** -0.209
(-3.416) (-3.311) (-5.538) (-1.076)
BSI3t 2.205*** 2.237*** 2.929*** 1.021***
(9.370) (-9.455) (-11.779) (-5.932)
BSI3(t-1) -0.962*** -0.903*** -1.440*** -0.311
(-4.055) (-3.822) (-5.835) (-1.832)
TR 0.554*** 0.446** 0.469** 0.442** 0.440** 0.469** 0.440** 0.404** 0.387** 0.404** 0.431** 0.451** 0.431**
(3.286) (2.937) (3.031) (2.971) (-2.953) (-3.066) (-2.953) (-2.859) (-2.677) (-2.859) (-2.683) (-2.756) (-2.684)
FR -0.391*** -0.342*** -0.369*** -0.341*** -0.334*** -0.363*** -0.334*** -0.295*** -0.297*** -0.295*** -0.336*** -0.328*** -0.336***
(-4.631) (-4.582) (-4.809) (-4.607) (-4.505) (-4.765) (-4.505) (-4.230) (-4.162) (-4.230) (-4.145) (-3.914) (-4.150)
常数项 -0.593 -2.008*** -0.691* -0.748** -2.120*** -0.724* -0.786** -2.307*** -0.760** -0.818** -1.341*** -0.628* -0.632*
(-1.777) (-2.634) (-2.341) (-4.768) (-4.897) (-2.464) (-2.773) (-5.548) (-2.861) (-3.127) (-3.271) (-1.982) (-2.018)
F 11.980*** 46.563*** 34.081*** 46.238*** 47.615*** 35.709*** 47.615*** 75.529*** 69.446*** 75.529*** 18.659*** 14.390*** 18.718***
R2 0.093 0.353 0.299 0.351 0.357 0.306 0.357 0.451 0.433 0.451 0.219 0.193 0.219
ΔR2 0.093*** 0.260*** 0.206*** 0.259*** 0.264*** 0.214*** 0.264*** 0.358*** 0.340*** 0.358*** 0.126*** 0.100*** 0.126***
变量 模型三(因变量为CI) 模型四(因变量为R)
M1(PBSI1) M2(PBSI2) M3(PBSI3) M4(PBSI4) M5(PBSI5) M6(PBSI6)
系数
(t值)
系数
(t值)
系数
(t值)
系数
(t值)
系数
(t值)
系数
(t值)
PBSI1t 145.850***
(7.315)
5.297***
(7.452)
PBSI1(t-1) -90.081***
(-4.609)
-3.211***
(-4.587)
PBSI1t×ATTt 0.059*
(2.007)
0.002*
(2.188)
PBSI1(t-1)×ATTt-1 -0.004
(-0.131)
0.000
(0.084)
PBSI2t 30.313***
(6.683)
1.107***
(6.771)
PBSI2(t-1) -20.523***
(-4.596)
-0.732***
(-4.523)
PBSI2t×ATTt 0.016*
(2.419)
0.001**
(2.584)
PBSI2(t-1)×ATTt-1 -0.001
(-0.188)
0.000
(0.074)
PBSI3t 71.315***
(7.182)
2.633***
(7.383)
PBSI3(t-1) -47.989***
(-4.932)
-1.697***
(-4.821)
PBSI3t×ATTt 0.032*
(2.204)
0.001*
(2.293)
PBSI3(t-1)×ATTt-1 0.000
(0.032)
0.000
(0.253)
ATTt-1 -0.007
(-0.364)
-0.010?
(-1.653)
-0.011?
(-1.756)
-0.000
(-0.136)
-0.000
(-0.335)
-0.000
(-0.414)
ATTt -0.031?
(-1.683)
-0.007
(-1.102)
-0.005
(-0.771)
-0.001
(-1.511)
0.000
(0.048)
0.000
(0.425)
TR 21.023***
(4.926)
21.168***
(4.932)
21.322***
(5.062)
0.376*
(2.609)
0.353*
(2.408)
0.363*
(2.534)
FR -14.154***
(-6.931)
-13.471***
(-6.478)
-13.351***
(-6.515)
-0.316***
(-4.523)
-0.294***
(-4.035)
-0.293***
(-4.076)
CIt-1 0.907***
(57.510)
0.897***
(56.140)
0.899***
(56.860)
常数项 223.208***
(4.454)
282.514***
(5.920)
275.968***
(5.836)
-1.789**
(-2.867)
-0.614*
(-2.151)
-0.690*
(-2.442)
F 2.017? 2.927? 2.436? 2.408? 3.371* 2.689?
R2 0.960 0.959 0.960 0.496 0.486 0.500
预测模型 输出变量 输入变量 MSE
SVM _CI _Base 上证综合指数CIt 控制变量(CIt-1TRFR) 480.38
SVM _CI _BSI1 控制变量、BSI1tBSI1(t-1) 421.45
SVM _CI _ BSI2 控制变量、BSI2t、BSI2(t-1) 437.28
SVM _CI _ BSI3 控制变量、BSI3t、BSI3(t-1) 440.15
SVM _R _Base 上证综指收益率Rt 控制变量(TRFR) 0.58
SVM _R _ BSI1 控制变量、BSI1tBSI1(t-1) 0.45
SVM _R _BSI2 控制变量、BSI2t、BSI2(t-1) 0.43
SVM _R _BSI3 控制变量、BSI3t、BSI3(t-1) 0.47
RF _CI _Base 上证综合指数CIt 控制变量(CIt-1TRFR) 2633.16
RF _CI _BSI1 控制变量、BSI1tBSI1(t-1) 2034.15
RF _CI _BSI2 控制变量、BSI2tBSI2(t-1) 2126.18
RF _CI _BSI3 控制变量、BSI3tBSI3(t-1) 2301.17
RF _R _Base 上证综指收益率Rt 控制变量(TRFR) 0.54
RF _R _BSI1 控制变量、BSI1tBSI1(t-1) 0.34
RF _R _BSI2 控制变量、BSI2tBSI2(t-1) 0.33
RF _R _BSI3 控制变量、BSI3tBSI3(t-1) 0.34
[1] Baker M, Wurgler J.Investor Sentiment in the Stock Market[J]. Journal of Economic Perspectives, 2007, 21(2): 129-151.
doi: 10.1257/jep.21.2.129
[2] Brown G W, Cliff M T.Investor Sentiment and the Near-term Stock Market[J]. Journal of Empirical Finance, 2004, 11(1): 1-27.
doi: 10.1016/j.jempfin.2002.12.001
[3] Fisher K L, Statman M.Investor Sentiment and Stock Returns[J]. Financial Analysts Journal, 2000, 56(2): 16-27.
doi: 10.3905/jwm.1999.320352
[4] 王美今, 孙建军. 中国股市收益、收益波动与投资者情绪[J]. 经济研究, 2004(10): 75-83.
[4] (Wang Meijin, Sun Jianjun. Stock Market Returns, Volatility and the Role of Investor Sentiment in China[J]. Economic Research Journal, 2004(10): 75-83.)
[5] 郁晨. 投资者情绪理论、度量及应用研究综述[J]. 金融评论, 2017(3): 111-126.
[5] (Yu Chen.Investor Sentiment Theory: Measurement and Application[J]. Chinese Review of Financial Studies, 2017(3): 111-126.)
[6] Barberis N, Shleifer A, Vishny R.A Model of Investor Sentiment[J]. Journal of Financial Economics, 1998, 49(3): 307-343 .
doi: 10.1016/S0304-405X(98)00027-0
[7] 张强, 杨淑娥, 杨红, 等. 中国股市投资者情绪与股票收益的实证研究[J]. 系统工程, 2007, 25(7): 13-17.
doi: 10.3969/j.issn.1001-4098.2007.07.003
[7] (Zhang Qiang, Yang Shue, Yang Hong.An Empirical Study on Investors’ Sentiment and Stock Returns in Chinese Stock Market[J].Systems Engineering, 2007, 25(7): 13-17.)
doi: 10.3969/j.issn.1001-4098.2007.07.003
[8] Stambaugh R F, Yu J F, Yuan Y.The Short of It: Investor Sentiment and Anomalies[J]. Journal of Financial Economics, 2012, 104(2): 288-302.
doi: 10.1016/j.jfineco.2011.12.001
[9] Antweiler W, Frank M Z.Is All that Talk just Noise? The Information Content of Internet Stock Message Boards[J]. The Journal of Finance, 2004, 59(3): 1259-1294.
doi: 10.1111/j.1540-6261.2004.00662.x
[10] Das S R, Chen M Y.Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web[J]. Management Science, 2007, 53(9): 1375-1388.
doi: 10.1287/mnsc.1070.0704
[11] 蒋翠清, 梁坤, 丁勇, 等. 基于社会媒体的股票行为预测[J]. 中国管理科学, 2015, 23(1): 17-24.
doi: 10.16381/j.cnki.issn1003-207x.2015.01.003
[11] (Jiang Cuiqing, Liang Kun, Ding Yong, et al.Predicting Stock Behavior via Social Media[J]. Chinese Journal of Management Science, 2015, 23(1): 17-24.)
doi: 10.16381/j.cnki.issn1003-207x.2015.01.003
[12] 陆静, 周媛. 投资者情绪对股价的影响——基于AH股交叉上市股票的实证分析[J]. 中国管理科学, 2015, 23(11): 21-28.
doi: 10.16381/j.cnki.issn1003-207x.2015.11.003
[12] (Lu Jing, Zhou Yuan.The Effect of Investor Sentiment on Stock Pricing—An Empirical Study Based on A-H Shares of Cross-listing Companies[J]. Chinese Journal of Management Science, 2015, 23(11): 21-28.)
doi: 10.16381/j.cnki.issn1003-207x.2015.11.003
[13] 宋顺林, 王彦超. 投资者情绪如何影响股票定价?—基于IPO公司的实证研究[J]. 管理科学学报, 2016, 19(5): 41-55.
doi: 10.3969/j.issn.1007-9807.2016.05.004
[13] (Song Shunlin, Wang Yanchao.How does Investor Sentiment Affect Stock Pricing? An Empirical Research Based on IPO Firms[J]. Journal of Management Sciences in China, 2016, 19(5): 41-55.)
doi: 10.3969/j.issn.1007-9807.2016.05.004
[14] 王春. 投资者情绪对股票市场收益和波动的影响——基于开放式股票型基金资金净流入的实证研究[J]. 中国管理科学, 2014, 22(9): 49-56.
[14] (Wang Chun.The Effect of Investor Sentiment on Return and Volatility of Stock Market-Based on Empirical Study of Open-end Equity Funds[J]. Chinese Journal of Management Science, 2014, 22(9): 49-56.)
[15] Chen M P, Chen P F, Lee C C.Asymmetric Effects of Investor Sentiment on Industry Stock Returns: Panel Data Evidence[J]. Emerging Markets Review, 2013, 14(1): 35-54.
doi: 10.1016/j.ememar.2012.11.001
[16] 段江娇, 刘红忠, 曾剑平. 投资者情绪指数、分析师推荐指数与股指收益率的影响研究——基于我国东方财富网股吧论坛、新浪网分析师个股评级数据[J]. 上海金融, 2014(11): 60-64.
[16] (Duan Jiangjiao, Liu Hongzhong, Zeng Jianping.Research on the Impact of Investor Sentiment Index, Analyst Recommendation Index and Stock Index Yield - Based on the Ranking of China Orient Bank.com.cn and Sina.com[J]. Shanghai Finance, 2014(11): 60-64.)
[17] 王洪伟, 张对, 郑丽娟, 等. 网络股评对股市走势的影响:基于文本情感分析的方法[J]. 情报学报, 2015, 34(11): 1190-1202.
[17] (Wang Hongwei, Zhang Dui, Zheng Lijuan, et al.The Effect of Online Comments on Stock Trends by Sentiment Analysis[J]. Journal of the China Society for Scientific and Technical Information, 2015, 34(11): 1190-1202.)
[18] 黄润鹏, 左文明, 毕凌燕. 基于微博情绪信息的股票市场预测[J]. 管理工程学报, 2015, 29(1): 47-52.
[18] (Huang Runpeng, Zuo Wenming, Bi Lingyan.Predicting the Stock Market Based on Microblog Mood[J]. Journal of Industrial Engineering, 2015, 29(1): 47-52.)
[19] Kurov A.Investor Sentiment and the Stock Market’s Reaction to Monetary Policy[J]. Journal of Banking & Finance, 2010, 34(1): 139-149.
doi: 10.1016/j.jbankfin.2009.07.010
[20] Porshnev A, Redkin I, Shevchenko A.Machine Learning in Prediction of Stock Market Indicators Based on Historical Data and Data from Twitter Sentiment Analysis[C]// Proceedings of the 13th International Conference on Data Mining Workshops. IEEE, 2011: 440-444.
[21] Kearney C, Liu S.Textual Sentiment in Finance: A Survey of Methods and Models[J]. International Review of Financial Analysis, 2014, 33(3): 171-185.
doi: 10.1016/j.irfa.2014.02.006
[22] Oliveira N, Cortez P, Areal N.Stock Market Sentiment Lexicon Acquisition Using Microblogging Data and Statistical Measures[J]. Decision Support Systems, 2016, 85(C): 62-73.
doi: 10.1016/j.dss.2016.02.013
[23] Renault T.Intraday Online Investor Sentiment and Return Patterns in the U.S. Stock Market[J]. Journal of Banking & Finance, 2017, 84(11): 25-40.
doi: 10.1016/j.jbankfin.2017.07.002
[24] 杨晓兰, 沈翰彬, 祝宇. 本地偏好、投资者情绪与股票收益率:来自网络论坛的经验证据[J]. 金融研究, 2016(12): 143-158.
[24] (Yang Xiaolan, Shen Hanbin, Zhu Yu.The Effect of Local Bias in Investor Attention and Investor Sentiment on Stock Markets: Evidence from Online Forum[J]. Journal of Financial Research, 2016(12): 143-158.)
[25] Bollen J, Mao H, Zeng X.Twitter Mood Predicts the Stock Market[J]. Journal of Computational Science, 2011, 2(1):1-8.
doi: 10.1016/j.jocs.2010.12.007
[26] Cheng Y H, Ho H Y.Social Influence’s Impact on Reader Perceptions of Online Reviews[J]. Journal of Business Research, 2015, 68(4): 883-887.
doi: 10.1016/j.jbusres.2014.11.046
[27] Piñeiro-Chousa J R, López-Cabarcos M Á, Pérez-Pico A M. Examining the Influence of Stock Market Variables on Microblogging Sentiment[J]. Journal of Business Research, 2015, 69(6): 2087-2092.
doi: 10.1016/j.jbusres.2015.12.013
[28] Oliveira N, Cortez P, Areal N.The Impact of Microblogging Data for Stock Market Prediction: Using Twitter to Predict Returns, Volatility, Trading Volume and Survey Sentiment Indices[J]. Expert Systems with Applications, 2017, 73: 125-144.
doi: 10.1016/j.eswa.2016.12.036
[29] Cortez P, Embrechts M J.Using Sensitivity Analysis and Visualization Techniques to Open Black Box Data Mining Models[J]. Information Sciences, 2013, 225: 1-17.
doi: 10.1016/j.ins.2012.10.039
[30] 阳爱民, 林江豪, 周咏梅. 中文文本情感词典构建方法[J]. 计算机科学与探索, 2013, 7(11): 1033-1039.
doi: 10.3778/j.issn.1673-9418.1305008
[30] (Yang Aimin, Lin Jianghao, Zhou Yongmei.Method on Building Chinese Text Sentiment Lexicon[J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(11): 1033-1039.)
doi: 10.3778/j.issn.1673-9418.1305008
[1] Huang Mingxuan,Jiang Caoqing,Lu Shoudong. Expanding Queries Based on Word Embedding and Expansion Terms[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[2] Xu Guang,Ren Ming,Song Chengyu. Extracting China’s Economic Image from Western News[J]. 数据分析与知识发现, 2021, 5(5): 30-40.
[3] Dai Bing,Hu Zhengyin. Review of Studies on Literature-Based Discovery[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[4] Yu Chuanming, Wang Manyi, Lin Hongjun, Zhu Xingyu, Huang Tingting, An Lu. A Comparative Study of Word Representation Models Based on Deep Learning[J]. 数据分析与知识发现, 2020, 4(8): 28-40.
[5] Xia Tian. Extracting Key-phrases from Chinese Scholarly Papers[J]. 数据分析与知识发现, 2020, 4(7): 76-86.
[6] Du Jian. Measuring Uncertainty of Medical Knowledge: A Literature Review[J]. 数据分析与知识发现, 2020, 4(10): 14-27.
[7] Peng Guan,Yuefen Wang. Advances in Patent Network[J]. 数据分析与知识发现, 2020, 4(1): 26-39.
[8] Mingxuan Huang,Shoudong Lu,Hui Xu. Cross-Language Information Retrieval Based on Weighted Association Patterns and Rule Consequent Expansion[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[9] Yonghua Cen,Zhihao Tan,Chengyao Wu. Impacts of Financial Media Information on Stock Market: An Empirical Study of Sentiment Analysis[J]. 数据分析与知识发现, 2019, 3(9): 98-114.
[10] Yanan Yang,Wenhui Zhao,Jian Zhang,Shen Tan,Beibei Zhang. Visualizing Policy Texts Based on Multi-View Collaboration[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[11] Mengji Zhang,Wanyu Du,Nan Zheng. Predicting Stock Trends Based on News Events[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
[12] Fan Xinyue,Cui Lei. Using Text Mining to Discover Drug Side Effects: Case Study of PubMed[J]. 数据分析与知识发现, 2018, 2(3): 79-86.
[13] Wang Qiangbing,Zhang Chengzhi. Constructing Users Profiles with Content and Gesture Behaviors[J]. 数据分析与知识发现, 2017, 1(2): 80-86.
[14] Xie Xiufang,Zhang Xiaolin. Integrated Analysis and Visualization of Sci-Tech Roadmaps: Case Study of Renewable Energy[J]. 数据分析与知识发现, 2017, 1(1): 16-25.
[15] Yao Zhaoxu,Ma Jing. Extracting Topic and Opinion from Microblog Posts with New Algorithm[J]. 现代图书情报技术, 2016, 32(7-8): 78-86.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn