Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (5): 48-58    DOI: 10.11925/infotech.2096-3467.2018.0007
Orginal Article Current Issue | Archive | Adv Search |
Computing Text Similarity Based on Concept Vector Space
Li Lin1, Li Hui2()
1School of Foreign Studies, Anhui University, Hefei 230601, China
2Department of Electronics Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
Download: PDF (1263 KB)   HTML ( 2
Export: BibTeX | EndNote (RIS)      

[Objective] This paper proposes a method to compute the semantic similarity of texts based on a concept vector space model. [Methods] First, we analyzed the text by dependency parser and extracted key words. Then, we used word embedding method to build vector space for each document. Third, we measured similarities between the two vector spaces and actual texts. Finally, we evaluated the new similarity measures with the data set of short texts and proposed an algorithm for long document classification. [Results] The proposed method effectively measured the semantic similarity of short texts and long documents. The accuracy of document classification was over 92% for the long ones. [Limitations] The performance of our method relies on the quality of dependency parser and word embedding vectors. [Conclusions] Combining linguistics theory and word embedding technique could efectively measure the semantic similarity among texts. This new method also reduces computation complexity and could be used in document classification, text clustering, and automatic question answering systems.

Key wordsText Similarity      Word Embedding      Dependency Syntax Parser      Document Classification     
Received: 03 January 2018      Published: 20 June 2018
ZTFLH:  TP391 G35  

Cite this article:

Li Lin,Li Hui. Computing Text Similarity Based on Concept Vector Space. Data Analysis and Knowledge Discovery, 2018, 2(5): 48-58.

URL:     OR

编号 当前节点 父节点 词性
1 nsubj|nsubjpass 任意 NOUN|PROPN
2 dobj|attr|oprd|iobj 任意 NOUN|PROPN
3 appos|nmod|npadvmod 任意 NOUN|PROPN
4 amod|acomp|compound 任意 ADJ
5 pobj prep NOUN|PROPN
6 conj pobj|nsubj|nsubjpass|dobj NOUN|PROPN
句子 概念词
The species is classified in the genus Panthera with the lion, leopard, jaguar and snow leopard. species, genus, panthera, lion, leopard, jaguar, snow, leopard
The dollar has hit its highest level against the euro in almost three months after the Federal Reserve head said the US trade deficit is set to stabilise. dollar, high, level, euro, month, federal reserve, head, US, trade, deficit
Wayne Rooney made a winning return to Everton as Manchester United cruised into the FA Cup quarter-finals. wayne, rooney, win, return, everton, FA, cup, quarter, finals
训练集(train) 开发集(dev) 测试集(test) 总计(total)
新闻 3 299 500 500 4 299
字幕 2 000 625 625 3 250
论坛 450 375 254 1 079
合计 5 749 1 500 1 379 8 626
方法 开发集(dev) 测试集(test)
BOW 0.403 0.294
BOW+Word2Vec 0.653 0.532
Concept VS 0.725 0.642
Word2Vec 0.700 0.565
PV-DBOW 0.722 0.649
BBC BBC Sport Reuters Classic
类别 文档数 类别 文档数 类别 文档数 类别 文档数
Business 510 Athletics 101 Earn 3 735 CACM 1 480
Entertainment 386 Cricket 124 Acq 2 142 CRAN 1 393
Politics 417 Football 265 Crude 375 CISI 1 397
Sport 511 Rugby 147 Interest 369 MED 1 011
Technology 401 Tennis 100 Trade 366
money-fx 259
ship 256
wheat 162
sugar 149
coffee 123
方法 BBC BBC Sport Reuters Classic
BOW 0.686 0.841 0.833 0.703
TF-IDF 0.653 0.532 0.722 0.689
Concept VS 0.957 0.973 0.925 0.958
WMD[27] - 0.954 0.965 0.972
[1] 陈二静, 姜恩波. 文本相似度计算方法研究综述[J]. 数据分析与知识发现, 2017, 1(6): 1-11.>
[1] (Chen Erjing, Jiang Enbo.Review of Studies on Text Similarity Measures[J]. Data Analysis and Knowledge Discovery, 2017, 1(6): 1-11.)
[2] Salton G, Wong A, Yang C S.A Vector Space Model for Automatic Indexing[J]. Communications of the ACM, 1975, 18(11): 613-620.
doi: 10.1145/361219.361220
[3] Salton G, Buckley C.Term-Weighting Approaches in Automatic Text Retrieval[J]. Information Processing & Management, 1988, 24(5): 513-523.
[4] Landauer T K, Foltz P W, Laham D.An Introduction to Latent Semantic Analysis[J]. Discourse Processes, 1998, 25(2-3): 259-284.
doi: 10.1080/01638539809545028
[5] Hofmann T.Probabilistic Latent Semantic Analysis[C]// Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence. 1999: 289-296.
[6] Blei D M, Ng A Y, Jordan M I.Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[7] Miller G A.WordNet: A Lexical Database for English[J]. Communications of the ACM, 1995, 38(11): 39-41.
[8] 董振东, 董强, 郝长伶. 知网的理论发现[J]. 中文信息报, 2007, 21(4): 3-9.
[8] (Dong Zhendong, Dong Qiang, Hao Changling.Theoretical Findings of HowNet[J]. Journal of Chinese Information Processing, 2007, 21(4): 3-9.)
[9] 梅家驹, 竺一鸣, 高蕴琦, 等. 同义词词林[M]. 上海: 上海辞书出版社, 1983.
[9] (Mei Jiaju, Zhu Yiming, Gao Yunqi, et al.Tongyici Cilin [M]. Shanghai: Shanghai Lexicographical Publishing House, 1983.)
[10] Pedersen T, Patwardhan S, Michelizzi J.WordNet: Similarity - Measuring the Relatedness of Concepts[C]// Proceedings of the 19th National Conference on Artificial Intelligence. 2004: 38-41.
[11] 江敏, 肖诗斌, 王弘蔚, 等. 一种改进的基于《知网》的词语语义相似度计算[J]. 中文信息学报, 2008, 22(5): 84-89.
[11] (Jiang Min, Xiao Shibin, Wang Hongwei, et al.An Improved Word Similarity Computing Method Based on HowNet[J]. Journal of Chinese Information Processing, 2008, 22(5): 84-89.)
[12] 田久乐, 赵蔚. 基于同义词词林的词语相似度计算方法[J]. 吉林大学学报: 信息科学版, 2010, 28(6): 602-608.
doi: 10.3969/j.issn.1671-5896.2010.06.011
[12] (Tian Jiule, Zhao Wei.Words Similarity Algorithm Based on Tongyici Cilin in Semantic Web Adaptive Learning System[J]. Journal of Jilin University: Information Science Edition, 2010, 28(6):602-608.)
doi: 10.3969/j.issn.1671-5896.2010.06.011
[13] Gabrilovich E, Markovitch S.Computing Semantic Relatedness Using Wikipedia-Based Explicit Semantic Analysis[C]// Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI’07). 2007: 1606-1611.
[14] 彭丽针, 吴扬扬. 基于维基百科社区挖掘的词语语义相似度计算[J]. 计算机科学, 2016, 43(4): 45-49.
[14] (Peng Lizhen, Wu Yangyang.Semantic Similarity Computing Based on Community Mining of Wikipedia[J]. Computer Science, 2016, 43(4): 45-49.)
[15] 詹志建, 梁丽娜, 杨小平. 基于百度百科的词语相似度计算[J]. 计算机科学, 2013, 40(6):199-202.
doi: 10.3969/j.issn.1002-137X.2013.06.043
[15] (Zhan Zhijian, Liang Lina, Yang Xiaoping.Word Similarity Measurement Based on BaiduBaike[J]. Computer Science, 2013, 40(6): 199-202.)
doi: 10.3969/j.issn.1002-137X.2013.06.043
[16] Mikolov T, Sutskever I, Chen K, et al.Distributed Representations of Words and Phrases and Their Compositionality[C]// Advances in Neural Information Processing Systems (NIPS 2013). 2013: 3111-3119.
[17] Shao Y.HCTI at SemEval-2017 Task 1: Use Convolutional Neural Network to Evaluate Semantic Textual Similarity[C]// Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017). 2017: 130-133.
[18] Tai K S, Socher R, Manning C D.Improved Semantic Representations from Tree-Structured Long Short-Term Memory Networks[C]// Proceedings of the 53rd Annual Meetings of Association for Computational Linguistics. 2015: 1556-1566.
[19] Kim H K, Kim H, Cho S.Bag-of-Concepts: Comprehending Document Representation Through Clustering Words in Distributed Representation[J]. Neurocomputing, 2017, 266: 366-352.
[20] 李峰, 侯加英, 曾荣仁, 等. 融合词向量的多特征句子相似度计算方法研究[J]. 计算机科学与探索, 2017, 11(4):608-618.
doi: 10.3778/j.issn.1673-9418.1604029
[20] (Li Feng, Hou Jiaying, Zeng Rongren, et al.Research on Multi-feature Sentence Similarity Computing Method with Word Embedding[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(4): 608-618.)
doi: 10.3778/j.issn.1673-9418.1604029
[21] 李晓, 解辉, 李立杰. 基于Word2Vec的句子语义相似度计算研究[J]. 计算机科学, 2017, 44(9): 256-260.
doi: 10.11896/j.issn.1002-137X.2017.09.048
[21] (Li Xiao, Xie Hui, Li Lijie.Research on Sentence Semantic Similarity Calculation Based on Word2Vec[J]. Computer Science, 2017, 44(9): 256-260.)
doi: 10.11896/j.issn.1002-137X.2017.09.048
[22] 刘海涛. 依存语法的理论与实践[M]. 北京: 科学出版社, 2009.
[22] (Liu Haitao.Dependency Grammar from Theory to Practice[M]. Beijing: Science Press, 2009.)
[23] Choi J D, Palmer M.Guidelines for the Clear Style Constituent to Dependency Conversion [R]. University of Colorado Boulder, 2012.
[24] Cer D, Diab M, Agirre E, et al.SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual Focused Evaluation[C]// Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017). 2017: 1-14.
[25] Mikolov T, Chen K, Corrado G, et al. Efficient Estimation of Word Representations in Vector Space[OL]. arXiv Preprint, arXiv:1301.3781, 2013.
[26] Le Q, Mikolov T.Distributed Representations of Sentences and Documents[C]// Proceedings of the 31st International Conference on Machine Learning (ICML-14). 2014: 1188-1196.
[27] Kusner M, Sun Y, Kolkin N, et al.From Word Embeddings to Document Distances[C]// Proceedings of the 32nd International Conference on Machine Learning. 2015: 957-966.
[28] Maaten L, Hinton G.Visualizing Data Using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
doi: 10.1007/s10846-008-9235-4
[1] Wang Hanxue,Cui Wenjuan,Zhou Yuanchun,Du Yi. Identifying Pathogens of Foodborne Diseases with Machine Learning[J]. 数据分析与知识发现, 2021, 5(9): 54-62.
[2] Huang Mingxuan,Jiang Caoqing,Lu Shoudong. Expanding Queries Based on Word Embedding and Expansion Terms[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[3] Shen Si,Li Qinyu,Ye Yuan,Sun Hao,Ye Wenhao. Topic Mining and Evolution Analysis of Medical Sci-Tech Reports with TWE Model[J]. 数据分析与知识发现, 2021, 5(3): 35-44.
[4] Wei Tingxin,Bai Wenlei,Qu Weiguang. Sense Prediction for Chinese OOV Based on Word Embedding and Semantic Knowledge[J]. 数据分析与知识发现, 2020, 4(6): 109-117.
[5] Su Chuandong,Huang Xiaoxi,Wang Rongbo,Chen Zhiqun,Mao Junyu,Zhu Jiaying,Pan Yuhao. Identifying Chinese / English Metaphors with Word Embedding and Recurrent Neural Network[J]. 数据分析与知识发现, 2020, 4(4): 91-99.
[6] Gao Yuan,Shi Yuanlei,Zhang Lei,Cao Tianyi,Feng Jun. Reconstructing Tour Routes Based on Travel Notes[J]. 数据分析与知识发现, 2020, 4(2/3): 165-172.
[7] Wang Sili,Zhu Zhongming,Yang Heng,Liu Wei. Automatically Identifying Hypernym-Hyponym Relations of Domain Concepts with Patterns and Projection Learning[J]. 数据分析与知识发现, 2020, 4(11): 15-25.
[8] Xinyu Zai,Xuedong Tian. Retrieving Scientific Documents with Formula Description Structure and Word Embedding[J]. 数据分析与知识发现, 2020, 4(1): 131-138.
[9] Hui Nie,Huan He. Identifying Implicit Features with Word Embedding[J]. 数据分析与知识发现, 2020, 4(1): 99-110.
[10] Yan Yu,Lei Chen,Jinde Jiang,Naixuan Zhao. Measuring Patent Similarity with Word Embedding and Statistical Features[J]. 数据分析与知识发现, 2019, 3(9): 53-59.
[11] Qingtian Zeng,Xiaohui Hu,Chao Li. Extracting Keywords with Topic Embedding and Network Structure Analysis[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[12] Peiyao Zhang,Dongsu Liu. Topic Evolutionary Analysis of Short Text Based on Word Vector and BTM[J]. 数据分析与知识发现, 2019, 3(3): 95-101.
[13] Wang Tingting,Han Man,Wang Yu. Optimizing LDA Model with Various Topic Numbers: Case Study of Scientific Literature[J]. 数据分析与知识发现, 2018, 2(1): 29-40.
[14] Zhang Qin,Guo Hongmei,Zhang Zhixiong. Extracting Entity Relationship with Word Embedding Representation Features[J]. 数据分析与知识发现, 2017, 1(9): 8-15.
[15] Chen Erjing,Jiang Enbo. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938