|
|
Classifying Chinese Texts with CapsNet |
Feng Guoming, Zhang Xiaodong( ), Liu Suhui |
School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract [Objective] This study tries to address the issues facing long text representation and use CapsNet to improve the accuracy of Chinese text classification. [Methods] First, we proposed a LDA matrix and word vector to represent the long texts. Then, we constructed a Chinese classification model based on CapsNet. Third, we examined the proposed model with Sogou news corpus and the text classification corpus of Fudan University. Finally, we compared our results with those of the classic models (e.g., TextCNN, DNN and so on). [Results] The performance of CapsNet model was better than other models. The classification accuracy in five categories of short and long texts reached 89.6% and 96.9% respectively. The convergence speed of the proposed model was almost two times faster than that of the CNN model. [Limitations] The computational complexity of the model is high, which limits the size of testing corpus. [Conclusions] The proposed Chinese text representation method and the modified CapsNet model have better accuracy, convergence speed and robustness than the existing ones.
|
Received: 08 April 2018
Published: 16 January 2019
|
|
[1] |
唐明, 朱磊, 邹显春. 基于Word2Vec的一种文档向量表示[J]. 计算机科学, 2016, 43(6): 214-217.
doi: 10.11896/j.issn.1002-137X.2016.6.043
|
[1] |
(Tang Ming, Zhu Lei, Zou Xianchun.Document Vector Representation Based on Word2Vec[J]. Computer Science, 2016, 43(6): 214-217.)
doi: 10.11896/j.issn.1002-137X.2016.6.043
|
[2] |
幸凯. 基于卷积神经网络的文本表示建模方法研究[D]. 武汉: 华中师范大学, 2017.
|
[2] |
(Xing Kai.Research on Text Modeling Based on Convolutional Neural Network Approaches[D]. Wuhan: Central China Normal University, 2017.)
|
[3] |
黄磊, 杜昌顺. 基于递归神经网络的文本分类研究[J]. 北京化工大学学报: 自然科学版, 2017, 44(1): 98-104.
|
[3] |
(Huang Lei, Du Changshun.Application of Recurrent Neural Networks in Text Classification[J]. Journal of Beijing University of Chemical Technology: Natural Science Edition, 2017, 44(1): 98-104.)
|
[4] |
Sabour S, Frosst N, Hinton G E.Dynamic Routing Between Capsules[OL]. arXiv Preprint. arXiv: 1710.09829.
|
[5] |
Salton G, Wong A, Yang C S.A Vector Space Model for Automatic Indexing[J]. Communications of the ACM,1975, 18(11): 613-620.
doi: 10.1145/361219.361220
|
[6] |
Deerwester S, Dumais S, Furnas G W, et al.Indexing by Latent Semantic Analysis[J]. Journal of the American Society for Information Science, 1990, 41(6): 391-407.
doi: 10.1002/(ISSN)1097-4571
|
[7] |
Hofmann T.Unsupervised Learning by Probabilistic Latent Semantic Analysis[J]. Machine Learning, 2001, 42(1-2): 177-196.
doi: 10.1023/A:1007617005950
|
[8] |
Blei D M, Ng A Y, Jordan M I.Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3(2): 993-1022.
|
[9] |
Mikolov T, Chen K, Corrado G, et al.Efficient Estimation of Word Representations in Vector Space[OL]. arXiv Preprint. arXiv: 1301.3781.
|
[10] |
Joachims T.Text Categorization with Support Vector Machines: Learning with Many Relevant Features[C]// Proceedings of the 10th European Conference on Machine Learning. 1998: 137-142.
|
[11] |
Kim Y.Convolutional Neural Networks for Sentence Classification[OL]. arXiv Preprint. arXiv: 1408.5882.
doi: 10.3115/v1/D14-1181
|
[12] |
Kalchbrenner N, Grefenstette E, Blunsom P.A Convolutional Neural Network for Modelling Sentences[OL]. arXiv Preprint. arXiv: 1404.2188.
doi: 10.3115/v1/P14-1062
|
[13] |
Liu P, Qiu X, Huang X.Recurrent Neural Network for Text Classification with Multi-Task Learning[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. 2016: 2873-2879.
|
[14] |
Joulin A, Grave E, Bojanowski P, et al.Bag of Tricks for Efficient Text Classification[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. 2016: 427-431.
|
[15] |
崔建明, 刘建明, 廖周宇. 基于SVM算法的文本分类技术研究[J]. 计算机仿真, 2013, 30(2): 299-302.
doi: 10.3969/j.issn.1006-9348.2013.02.069
|
[15] |
(Cui Jianming, Liu Jianming, Liao Zhouyu.Research of Text Categorization Based on Support Vector Machine[J]. Computer Simulation, 2013, 30(2): 299-302.)
doi: 10.3969/j.issn.1006-9348.2013.02.069
|
[16] |
李玉鑑, 王影, 冷强奎. 基于最近邻子空间搜索的两类文本分类方法[J]. 计算机工程与科学, 2015, 37(1): 168-172.
doi: 10.3969/j.issn.1007-130X.2015.01.026
|
[16] |
(Li Yujian, Wang Ying, Leng Qiangkui.Two-class Text Categorization Using Nearest Subspace Search[J]. Computer Engineering and Science, 2015, 37(1): 168-172.)
doi: 10.3969/j.issn.1007-130X.2015.01.026
|
[17] |
吕超镇, 姬东鸿, 吴飞飞. 基于LDA特征扩展的短文本分类[J]. 计算机工程与应用, 2015, 51(4):123-127.
doi: 10.3778/j.issn.1002-8331.1403-0448
|
[17] |
(Lv Chaozhen, Ji Donghong, Wu Feifei.Short Text Classification Based on LDA Feature Extension[J]. Computer Engineering and Applications, 2015, 51(4): 123-127.)
doi: 10.3778/j.issn.1002-8331.1403-0448
|
[18] |
郭东亮, 刘小明, 郑秋生. 基于卷积神经网络的互联网短文本分类方法[J]. 计算机与现代化, 2017(4): 78-81.
doi: 10.3969/j.issn.1006-2475.2017.04.016
|
[18] |
(Guo Dongliang, Liu Xiaoming, Zheng Qiusheng.Internet Short-text Classification Method Based on CNNs[J]. Computer and Modernization, 2017(4): 78-81.)
doi: 10.3969/j.issn.1006-2475.2017.04.016
|
[19] |
陈杰, 陈彩, 梁毅. 基于Word2Vec的文档分类方法[J]. 计算机系统应用, 2017, 26(11): 159-164.
doi: 10.15888/j.cnki.csa.006055
|
[19] |
(Chen Jie, Chen Cai, Liang Yi.Document Classification Method Based on Word2Vec[J]. Computer Systems & Applications, 2017, 26(11): 159-164.)
doi: 10.15888/j.cnki.csa.006055
|
[20] |
夏从零, 钱涛, 姬东鸿. 基于事件卷积特征的新闻文本分类[J]. 计算机应用研究, 2017, 34(4): 991-994.
doi: 10.3969/j.issn.1001-3695.2017.04.007
|
[20] |
(Xia Congling, Qian Tao, Ji Donghong.Event Convolutional Feature Based News Documents Classification[J]. Application Research of Computers, 2017, 34(4): 991-994.)
doi: 10.3969/j.issn.1001-3695.2017.04.007
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|